Skip to main content

Equations of Motion in Tensor Variables and Their Application to Multibody Systems

  • Chapter
  • 601 Accesses

Part of the book series: NATO ASI Series ((NATO ASI F,volume 161))

Summary

Two basic methods for deriving motion equations are used in analytical mechanics: the Newton-Euler approach and the Lagrangian approach. A well-known advantage of the first method is the description of the system’s behavior by means of vector and tensor quantities with clear geometrical and mechanical sense such as mass center, inertia tensor, angular velocity, momentum, moment of momentum, etc. A disadvantage of this method is the necessary introduction of the constraint forces in the motion equations and then their elimination which very often turns out to be a complicated problem. On the other hand the second approach for deriving the motion equations — the Lagrangian formalism — uses as generalized parameters only scalar quantities which usually have a formal character and do not reflect directly the geometry and the dynamics of the system considered. In this chapter the Lagrangian formalism is generalized in such a way that not only scalar but also vector and tensor quantities can be chosen directly as generalized parameters. The derived tensor Lagrangian equations unify the advantages of both the basic methods and open new opportunities for investigations especially in the field of multibody systems. They have clear geometrical and mechanical meaning and build an effective base for analytical and numerical analysis of the system’s behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barhorst AA, Everett LJ (1995) “Modeling Hybrid Parameter Multiple Body Systems: a Different Approach”. International], of Non-Linear Mech.30 (1), p. 1–21

    Article  MATH  Google Scholar 

  • Boltzmann L (1902) “Über die Form der Lagrangeschen Gleichungen für nichtholonome generalizierte Koordinaten”, Sitzungberichte der Mathematisch-Naturwissenschaftlichen Akademie der Wissenschaften zu Wien, 111, Abteilung IIa, Heft 1–2, 1603–1614

    Google Scholar 

  • Essén H (1994) “On the Geometry of Nonholonomic Dynamics”. ASME, Journal of Applied Mechanics 61, p. 689–694

    Article  MATH  Google Scholar 

  • Everett LJ, McDermott MJ (1986) “The Use of Vector Techniques in Variational Problems”, ASME, J. of Dynamic Systems, Measurement, and Control 108, p. 141–145

    Article  MATH  Google Scholar 

  • Garcia de Jalon J, Unda J, Avello A (1986) “Natural Coordinates for Computer Analysis of Multibody Systems”. Comput. Meth. Appl. Mech. and Eng.56(3), p. 309–327

    Article  MATH  Google Scholar 

  • Gersten J, Soodak H, Tiersten MS (1991) “Ball Moving on Stationary or Rotating Horizontal Plane”. American Journal of Physics 60, p. 43–47

    Article  Google Scholar 

  • Gorr GV, Kudryaschova F, Stepanova LA (1978) “Classical Problems of Dynamics of Rigid Body”. Naukova dumka, Kiev (in Russian)

    Google Scholar 

  • Hamel G (1904) “Die Lagrange-Eulersche Gleichungen der Mechanik”, Zeitschrift für Mathematik und Physik 50, p.1–57

    MATH  Google Scholar 

  • Kharlamov PV (1972) “On the motion equations of rigid bodies”, Mech. of rigid bodies, Kiev, 4, p. 52–73 (in Russian)

    Google Scholar 

  • Lagrange JL (1788) “Mechanique analytique”, Paris

    Google Scholar 

  • Lebedev PA (1986) “Vector Algorithm’s of Explicit Solution of Problems for Positions and Displacements of Rigid-Body Systems”. Conference of theor. and appl mech., Taschkent, 24–30 Sept., 1986, (in Russian)

    Google Scholar 

  • Lévy-Leblond JM (1986) “Le billiard d’ANAIS”, European Journal of Physics 7, p. 252–258

    Article  Google Scholar 

  • Lewis AD, Murray RM (1994) “Variational Principles for Constrained Systems: Theory and Experiment”. International Journal of Non-Linear Mechanics 30 (6), p. 793–815

    Article  MathSciNet  Google Scholar 

  • Lilov L (1993) “Modeling of Multibody Systems”, Nauka, Moscow (in Russian)

    Google Scholar 

  • Lilov L, Vasileva N (1984) “Steady-state Motions of a Tree-like System of Lagrange’s Gyroscopes”, Theor. and Appl. mech. Sofia, 15(3), p. 24–34 (in Russian)

    MathSciNet  Google Scholar 

  • Maggi GA (1901) “Di alcune nuove forma della equazioni della dinamica applicabile ai sistemi anolonomi”, Atti della Reale Accademia Nationale dei Linei, Rendiconti Classe fisiche e mathematiche, Ser.5, v. 10, fasc.2, p. 287–291

    Google Scholar 

  • Milne-Thomson LM (1938) “Theoretical Hydrodynamics”. Macmillan, London

    Google Scholar 

  • Neimark JI, Fufaev NA (1967) “Dynamics of Nonholonomic Systems”. Nauka, Moscow (in Russian) (Translated version in English, American Mathematical Society, Providence, RI, 1972)

    Google Scholar 

  • Papastavridis JG (1991) “On Energy Rate Theorems for Linear First-Order Nonholonomic Systems”. ASME, Journal of Applied Mechanics 58, p. 536–544

    Article  MathSciNet  MATH  Google Scholar 

  • Papastavridis JG (1994) On the Boltzmann-Hamel Equations of Motion: a Vectorial Treatment. ASME, Journal of Applied Mechanics 61, p. 453–459

    Article  MathSciNet  MATH  Google Scholar 

  • Quinn RD (1990) “Equations of Motion for Structures in Terms of Quasi-Coordinates”, ASME, Journal of Applied Mechanics 57, p. 745–749

    Article  Google Scholar 

  • Vasileva N, Lilov L (1988) “Tensor Form of Lagrange’s Equations”. Annual of Sofia University, book 2 — Mechanique 82, p. 249–286 (in Russian)

    MathSciNet  MATH  Google Scholar 

  • Wittenburg J (1977) “Dynamics of Systems of Rigid Bodies”. B.G. Teubner, Stuttgart

    Book  MATH  Google Scholar 

  • Wittenburg J, Lilov L (1975) “Relative Equilibrium Positions and Their Stability for a Multi-Body Satellite in a Circular Orbit”, Ingenieur Archiv 44(4), p. 269–279

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lilov, L., Vassileva, N. (1998). Equations of Motion in Tensor Variables and Their Application to Multibody Systems. In: Angeles, J., Zakhariev, E. (eds) Computational Methods in Mechanical Systems. NATO ASI Series, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03729-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03729-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08369-3

  • Online ISBN: 978-3-662-03729-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics