Skip to main content

Optimization of Multi-DOF Mechanisms

  • Chapter

Part of the book series: NATO ASI Series ((NATO ASI F,volume 161))

Summary

The purpose of this chapter is to discuss recent results reported in the literature on mechanism synthesis using optimization techniques. We are interested in the optimum design of multi-DOF mechanisms taking into account their dimensions and their morphology. After introducing the general problem of optimum design in this context, we describe different formulations of objective functions used in order to represent the mechanical specifications of the mechanism at hand. A short survey of classical and nonclassical optimization algorithms is included with respect to their application to mechanism synthesis. Finally, several applications of mechanism optimization are discussed, as appearing in research and industrial environments. These applications comprise industrial manipulators and ergonomic layouts in encumbered environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal V., and Rao J. (1987): The mobility properties of kinematic chains. Mechanism and Machine Theory, 22 5, 497–504.

    Article  Google Scholar 

  • Angeles J., Alivizatos A., and Akhras R. (1988): An unconstrained non-linear least-square method of optimization of RRRR planar path generators. Mechanism and Machine Theory, 23 5, 343–353.

    Article  Google Scholar 

  • Artobolevski I. (1975): Les Mécanismes dans la technique moderne. Mir Publishing Co., Moscow.

    Google Scholar 

  • Avilés R., Ajuria N.B., and Garcia De Jalon J. (1994): A fairly general method for optimum synthesis of planar mechanisms. Mechanism and Machine Theory, 22 5, 321–328.

    Google Scholar 

  • Bendsoe M.P. (1996): Structural Optimization of and with Advanced Materials. In Tatsumi T., Watanabe E., and Kambe T. (Editors): Theoritical and Applied Mechanics, 19th ICTAM, Elsevier, 269–284.

    Google Scholar 

  • Chedmail P., and Wenger P. (1989): Design and positioning of a robot in an environment with obstacles using optimal search. Proc. IEEE Int. Conf. on Robotics and Automation, Scottsdale, May, 1069–1074.

    Google Scholar 

  • Chedmail P. (1990): Synthèse de robots et de sites robotisés — Modélisation des robots souples. Thèse de Doctorat ès Sciences, University of Nantes and E.C.N., January.

    Google Scholar 

  • Chedmail P., and Gautier M. (1990): Optimum choice of robot actuators. Trans. ASME, Int. Journal of Engineering in Industry, 112 4, 361–367.

    Article  Google Scholar 

  • Chedmail P., and Wenger P. (1995): Conception optimale d’un site robotisé de nettoyage d’avion. Proceedings of the International Conference on Industrial Engineering, Montréal, October, 367–376.

    Google Scholar 

  • Chedmail P., Damay E., and Rouchon C. (1996): Integrated design and artificial reality: accessibility and path planning. Proc. ASME Engineering System Design and Analysis, ESDA’96, Vol. 8, Montpellier, 149–156.

    Google Scholar 

  • Chedmail P., and Ramstein E. (1996): Robot mechanism synthesis and genetic algorithms. Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, April, 3466–3471.

    Google Scholar 

  • Chen I. and Burdick J. (1995): Determining task optimal robot assembly configurations. Proc. IEEE Int. Conf. on Robotics and Automation, Nagoya, Aichi, May, 132–137.

    Google Scholar 

  • Cheng G. (1996): Some development of structural topology optimization. In Tatsumi T., Watanabe E., and Kambe T. (Editors): Theoretical and Applied Mechanics, 19th ICTAM, Elsevier, 379–394.

    Google Scholar 

  • Delignières S. (1987): Choix de morphologies de robots. Doctoral Thesis University of Nantes, ENSM, November 1987.

    Google Scholar 

  • Erdman A.G., and Sandor G.N. (1991): Mechanism Design, Analysis and Synthesis, Prentice Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Farritor S., Dubowski S., Rutman N., and Cole J. (1996): A system-level modular design approach to field robotics. Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, April, 2890–2895.

    Google Scholar 

  • Frecker M.I., Ananthasuresh G.K., Nishiwaki S., Kikushi N., and Kota S. (1997): Topological synthesis of compliant mechanisms using multi-criteria optimization. Journal of Mechanical Design, Trans. ASME, 119, 238–245.

    Article  Google Scholar 

  • Freudenstein F., and Maki E.R. (1979): The creation of mechanisms according to kinematic structure and function. Environment and Planning B, 6, 375–391.

    Article  Google Scholar 

  • Goldberg D. (1989): Genetic algorithms in search optimization and machine learning. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  • Gonzalez-Palacios M.A., and Angeles J. (1993): Cam Synthesis, Kluwer Academic Publishers, Dordrecht.

    Book  MATH  Google Scholar 

  • Gosselin C, and Angeles J. (1987): Représentation graphique de la région de mobilité des mécanismes plans et sphériques à barres articulées. Mechanism and Machine Theory, 22 6, 557–562.

    Article  Google Scholar 

  • Hansen J.M. (1993): Synthesis of spatial mechanisms using optimization and continuation methods, in Seabra Pereira, M.F.O. and Ambrosio, J. (Editors): Computer Aided Analysis of Rigid and Flexible Mechanical Systems, NATO ASI Series E, Vol. 268, Kluwer Academic Publishers, Dordrecht, 441–453.

    Google Scholar 

  • Hoeltzel D., and Chieng W.H. (1990): Knowledge-based approaches for the creative synthesis of mechanisms. Computer-Aided Design, 22 1, 57–67.

    Article  Google Scholar 

  • Hooke R., and Jeeves T. (1961): Direct search solution of numerical and statistical problems. J.A.C.M., 8, 212–229.

    MATH  Google Scholar 

  • Jacquet L., Petiot J.F., Sommer J.L., and Koyama Y. (1997): Analysis of the setting up of a concurrent engineering scenario. In Chedmail P., Bocquet J.C., and Dornfeld D. (editors): Integrated Design and Manufacturing in Mechanical Engineering. Kluwer Academic Publishers. Dordrecht, 3–13.

    Chapter  Google Scholar 

  • Kim J.O. (1992): Task based kinematic design of robot manipulators. Ph.D Thesis, Robotics Institute, Carnegie-Mellon University, Pittsburg.

    Google Scholar 

  • Kirkpatrick S., Gellatt J.R., and Vecchi M.P. (1985): Optimization by simulated annealing. Science, 220, 671.

    Article  Google Scholar 

  • Larsen U.D., Sigmund O., and Bouwstra S. (1996): Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio, Proc. of the 9th IEEE Workshop on Micro Electro Mechanical Systems, February, San Diego, California, 365–371.

    Google Scholar 

  • Lee K., and Tortorelli D.A. (1985): A CAD system for designing robotic manipulators. Proc. IEEE Int. Conf. on Robotics and Automation, St Louis, March, 376–380.

    Google Scholar 

  • Liu T., and Yu C.H. (1995): Identification and classification of multi-degree-of-freedom and multi-loop mechanisms. Mechanism and Machine Theory, 117 3, 104–111.

    Google Scholar 

  • Martin J., and Gosselin C. (1996): Static balancing of planar parallel manipulators. Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, April, 3732–3737.

    Google Scholar 

  • Mayourian M., and Freudenstein F. (1984): The development of an atlas of the kinematic structures of mechanisms. ASME J. of Mechanisms, Transmissions, and Automatic in Design. 106 12,458–461.

    Article  Google Scholar 

  • Merlet J.P. (1996): Workspace oriented methodology for designing a parallel manipulator. Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, April, 3726–3731.

    Google Scholar 

  • Metropolis N., Rosenbluth A., Rosenbluth N., Teller A., and Teller E. (1953): Equations ofstate- Calculations by fast computing machines. Journal of Chemical Physics, 21, 1087.

    Article  Google Scholar 

  • Michalewicz Z. (1992): Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Berlin, 3rd edn. 1996.

    Book  MATH  Google Scholar 

  • Minoux M. (1983): Programmation mathématique, Théorie et algorithmes, Tome 1, Dunod — Bordas Editors and CNET-ENST, Paris.

    Google Scholar 

  • Olson D.G., Erdman A.G., and Riley D.R. (1985): A systematic procedure for type synthesis of mechanisms with literature review. Mechanism and Machine Theory, 20 4, 285–295.

    Article  Google Scholar 

  • Potkonjak V. (1986): Thermal criterion for the selection of d.c. drives for industrial robots. Proceedings ISIR’86, Brussels, Sept.-Oct., 129–140.

    Google Scholar 

  • Riffard V., and P. Chedmail (1996): Optimal posture of a human operator and CAD in robotics. IEEE International Conference on Robotics and Automation, 22–28 April, Minneapolis, 1199–1205.

    Google Scholar 

  • Rozvany G.I.N., Bendsoe M.P., and Kirsch U. (1995): Layout optimization of structures. Applied Mechanics Review, 48 2, 41–119.

    Article  Google Scholar 

  • Rubel A.J., and Kaufman R.E. (1977): KINSYN 3: A new human engineered system for interactive computer aided design of planar mechanisms, Trans. ASME, J. Engineering in Industry, 99, 440–448.

    Article  Google Scholar 

  • Sardain P. (1993): Contribution à la synthèse de mécanismes — Un environnement CAO pour la synthèse topologique et dimensionnelle de générateurs de mouvement. Doctoral Thesis, University of Poitiers, June.

    Google Scholar 

  • Seering W.P., and Pasch K.A. (1984): Methods for choosing actuators and transmission components for high performance manipulators. In: M. Brady, L.A. Gerhardt, M.F. Davidson (eds.), Robotics and Artificial Intelligence, NATO ASI, Series F, Vol. 11, Springer-Verlag, Berlin.

    Google Scholar 

  • Thomas M., Yuan Chou H.C, and Tesar D. (1985): Optimal actuator sizing for robotic manipulators based on local dynamic criteria. Trans. ASME, J. Mechanisms, Transmissions, and Auto, in Design, 107, June, 163–169.

    Google Scholar 

  • Vasiliu A.A. (1997): Une approche CAO pour la préconception des mécanismes plans générateurs de trajectoire: Realisme. Doctoral Thesis, Ecole Centrale de Paris, Châtenay-Malabry, February.

    Google Scholar 

  • Wenger P., and Chedmail P. (1991): Ability of a robot to travel through its free workspace. The Int. J. of Robotics Research, Vol. 10 3, 214–227.

    Article  Google Scholar 

  • Willmert K.D., Thornton W.A., and Khan M. R. (1978): A hierarchy of methods for analysis of elastic mechanisms with design applications. Proc. ASME. Design Eng. Tech. Conf., Minneapolis, September, 24–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chedmail, P. (1998). Optimization of Multi-DOF Mechanisms. In: Angeles, J., Zakhariev, E. (eds) Computational Methods in Mechanical Systems. NATO ASI Series, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03729-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03729-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08369-3

  • Online ISBN: 978-3-662-03729-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics