Three-dimensional Structural Variations and Functional Implications in α-Amylases

  • N. Aghajari
  • A. Kadziola
  • R. Haser
Conference paper


In an attempt to study the substrate specificity and catalytic mechanism of α-amylases, the active sites of the three-dimensional structures determined to date were compared.


Tryptophan Residue Bacillus Licheniformis Aspergillus Oryzae Barley Malt Tryptophanyl Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BOEL E., BRADY L., BRZOZOWSKI A.M., DEREWENDA Z., DODSON G.G., JENSEN V.J., PETERSEN S.B., SWIFT H., THIM L., WOLDIKE H.F., 1990. Calcium binding in α-amylases: an X-ray diffraction study at 2.1 Å resolution of two enzymes from Aspergillus. Biochemistry 29, 6244–6249.CrossRefGoogle Scholar
  2. BRADY R.L., BRZOZOWSKI A.M., DEREWENDA Z.S., DODSON E.J., DODSON G.G., 1991. Solution of the structure of Aspergillus niger acid α-amylase by combined molecular replacement and multiple isomorphous replacement methods. Acta Cryst. sect.B. 47, 527–535.CrossRefGoogle Scholar
  3. BRAYER G.D., LUO Y., WITHERS S.G., 1995. The structure of human pancreatic α- amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Science 4, 1730–1742.PubMedCrossRefGoogle Scholar
  4. BUISSON G., DuéE E., HASER R., PAYAN F., 1987. Three-dimensional structure of porcine pancreatic α-amylase at 2.9Å resolution. Role of calcium in structure and activity. EMBO J. 6, 3909–3916.PubMedGoogle Scholar
  5. GIBSON R.M., SVENSSON B., 1987. Identification of tryptophanyl residues involved in binding of carbohydrate ligands to barley α-amylase 2. Carlsberg Res. Commun. 52, 373–379.CrossRefGoogle Scholar
  6. GILLES C., ASTIER J.P., MARCHIS-MOUREN G., CAMBILLAU C., PAYAN F., 1996. Crystal structure of pig pancreatic α-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur. J. Biochem. 238, 561–569.PubMedCrossRefGoogle Scholar
  7. JESPERSEN H.M., MACGREGOR E.A., HENRISSAT B., SIERKS M.R., SVENSSON B., 1993. Starch- and glucogen-debranching and branching enzymes: prediction of structural features of the catalytic (β/α)8-barrel domain and evolutionary relationships to other amylolytic enzymes. J. Prot .Chem. 12, 791–805.CrossRefGoogle Scholar
  8. KADZIOLA A., ABE J.-I., SVENSSON B., HASER R., 1994. Crystal and molecular structure of barley α-amylase. J. Mol. Biol 239, 104–121.PubMedCrossRefGoogle Scholar
  9. KADZIOLA A., SøGAARD M., SVENSSON B., HASER R., Submitted.Google Scholar
  10. KOCHHAR S., DUA R.D., 1985. An active center tryptophan residue in liquefying α- amylase from Bacillus amyloliquefaciens. Biochem. Biophys. Res. Commun. 126, 966–973.CrossRefGoogle Scholar
  11. LARSON S.B, GREENWOOD A., CASIO D., DAY J., MCPHERSON A., 1994. Refined molecular structure of pig pancreatic α-amylase at 2.1Å resolution. J. Mol. Biol. 235, 1560–1584.PubMedCrossRefGoogle Scholar
  12. MACGREGOR E., 1988. α-Amylase structure and activity. J. Prot. Chem. 7, 399–415.CrossRefGoogle Scholar
  13. MACHIUS M., WIEGAND G., HUBER R., 1995. Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at 2.2Å resolution. J. Mol. Biol. 246, 545–559.PubMedCrossRefGoogle Scholar
  14. MATSUI I., YONEDA S., ISHIKAWA K., MIYAIRI S., FUKUI S, UMEYAMA H., HONDA K., 1994. Roles of the aromatic residues conserved in the active center of Saccharomycopsis α-amylase for transglycosylation. and hydrolysis activity. Biochemistry 33, 451–458.PubMedCrossRefGoogle Scholar
  15. MATSUURA Y., KUNUSOKI M., HARADA W., KAKUDO M., 1984. Structure and possible catalytic residues of taka-amylase A. J. Biochem. 95, 697–702.PubMedGoogle Scholar
  16. MCINTOSH L.P., HAND G., JOHNSON P.E., JOSHI, MD., KöRNER, M. PLESNIAK, L.A., ZISER L., WAKARCHUK W.W., WITHERS S.G., 1996. The pK a of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR Study of Bacillus circulans Xylanase. Biochemistry 35, 9958–9966.PubMedCrossRefGoogle Scholar
  17. QIAN M., HASER R., PAYAN F., 1993. Structure and molecular model refinement of pig pancreatic α-amylase at 2.1Å resolution. J. Mol. Biol. 231, 785–799.PubMedCrossRefGoogle Scholar
  18. QIAN M., HASER R., BUISSON G., DUéE E., PAYAN, F., 1994. The active center of a mammalian α-amylase. structure of the complex of a pancreatic α-amylase with a carbohydrate inhibitor refined to 2.2-Å resolution. Biochemistry 33, 6284–6294.PubMedCrossRefGoogle Scholar
  19. QIAN M., HASER R., PAYAN F., 1995. Carbohydrate binding sites in a pancreatic α- amylase-substrate complex, derived from X-ray structure analysis at 2.1Å resolution. Protein Science 4, 747–755.PubMedCrossRefGoogle Scholar
  20. RAMASUBBU N., PALOTH V., LUO Y., BRAYER G.D., LEVINE M.J., 1996. Structure of human salivary α-amylase at 1.6Å resolution: implications for its role in the oral cavity. Acta Cryst. sect. D. 52, 435–446.CrossRefGoogle Scholar
  21. SWIFT H.J., BRADY L., DEREWENDA Z.S., DODSON E.J., DODSON G.G., TURKENBERG J.P., WILKINSON A.J., 1991. Structure and molecular model refinement of Aspergillus oryzae (TAKA) α-amylase: an application of the simulated-annealing method. Acta Cryst.sect. B. 47, 535–544.CrossRefGoogle Scholar
  22. VALLéE, F., 1996. Ph.D thesis, University of Paris XLGoogle Scholar
  23. WIEGAND G., EPP O., HUBER R. 1995. The Crystal structure of porcine pancreatic a-amylase in complex with the microbial inhibitor tendamistat. J. Mol. Biol. 247, 99–110.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • N. Aghajari
    • 1
  • A. Kadziola
    • 2
  • R. Haser
    • 1
  1. 1.CNRS, Institut de Biologie Structurale et MicrobiologieLaboratoire d’Architecture et Fonction des MacromoléculesMarseille Cedex 20France
  2. 2.Center for Crystallographic StudiesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations