Bacterial γ-Poly(glutamic Acid)

  • R. A. Gross
Chapter
Part of the Macromolecular Systems — Materials Approach book series (MACROSYSTEMS)

Abstract

γ-Poly(glutamic acid), γ-PGA, is a bacterially synthesized water soluble nylon. It can be classified as a pseudo-poly(amino acid) which contains only glutamate repeat units. γ-PGA differs from proteins, however, in that the glutamate repeat units are polymerized by a ribosome-independent process. Furthermore, the glutamate repeat units are linked between the α-amino and γ-carboxylic acid functional groups (see below) [1].

Keywords

Hydrolysis Starch Manganese Citrate Polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Troy FA (1973) J Biol Chem 248 (1): 305Google Scholar
  2. 2.
    Hanby WE, Rydon HN (1946) Biochem 40: 297Google Scholar
  3. 3.
    Thorne CB, Gomez CG, Noyes HE, Housewright RD (1954) J Bacteriol 68 (3): 307Google Scholar
  4. 4.
    Torii M (1959) J Biochem 46 (2): 189Google Scholar
  5. 5.
    Hara T, Ueda S (1982) Agricul Biol Chem 46 (9): 2275CrossRefGoogle Scholar
  6. 6.
    Kramar E (1921) Centr Bakteriol Parasitenk Abt I Orig 88: 401Google Scholar
  7. 7.
    Ivanovics G, Bruckner V (1937) Z Immunitatsforsch 25: 250Google Scholar
  8. 8.
    Ivanovics G (1965) In: Florkin M, Stotzm EH (eds) Comprehensive biochemistry: lipids and amino acids and related compounds. Elsevier, New York, vol 6, p 286Google Scholar
  9. 9.
    Ezepchuk YV (1968) Zh Microbiol Epidemiol Immunobiol 45: 110Google Scholar
  10. 10.
    Housewright RD (1962) In: Gunsalus IC, Stanier RY (eds) The bacteria. Academic Press, New York, vol. III, p 389Google Scholar
  11. 11.
    Nitecki DE, Goodman JW (1971) In: Weinstein B (ed.) Chemistry and biochemistry of amino acids, peptides, and proteins. Marcel Dekker, New York, vol. I, p 87Google Scholar
  12. 12.
    Troy FA (1982) In: Kleinkauf H, von Dohren H (eds) Peptide antibiotics biosynthesis and functions. Walter de Gruyter, New York, p 49Google Scholar
  13. 13.
    Buchanan RE, Gibbons NE (eds.) Bergey’s manual of determinative bacteriology, 8th edn. William Wilkins, Baltimore, p 530Google Scholar
  14. 14.
    Vasantha N, Freese E (1978) J Gen Micro 112: 329CrossRefGoogle Scholar
  15. 15.
    Foerster HF (1972) J Bacteriol 111 (2): 437Google Scholar
  16. 16.
    Bernlohr RW (1967) J Bacteriol 93 (3): 1031Google Scholar
  17. 17.
    Leonard CG, Housewright RD, Thorne CG (1958) J Bacteriol 76: 499Google Scholar
  18. 18.
    Lafferty RM, Korstko B, Korsatko W (1984) In: Rose AH, Tempest DW (eds) Advances in microbial physiology. Academic Press, Cleveland OH, vol 25, chap 6, p 136Google Scholar
  19. 19.
    McLean RJC, Beauchemin D, Clapham L, Beveridge TJ (1990) Appl Enrion Micro 56 (12): 3671Google Scholar
  20. 20.
    Birrer GA, Cromwick A-M, Gross RA (1994) Int J Biol Macromol 16 (5): 265CrossRefGoogle Scholar
  21. 21.
    Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M (1993) Biosci Biotech Biochem 57 (7): 1212CrossRefGoogle Scholar
  22. 22.
    Cromwick A-M, Gross RA (1995) Int J Biol Macromol 17 (5): 259CrossRefGoogle Scholar
  23. 23.
    Goto A, Kunioka M (1992) Biosc Biotech Biochem 56 (7): 1031CrossRefGoogle Scholar
  24. 24.
    Sawa S, Murao S, Murakawa T, Omata S (1971) Nippon Nôgeikagaku Kaishi 45 (3): 123Google Scholar
  25. 25.
    Cromwick A-M, Birrer GA, Gross RA (1996) Biotechnol Bioeng 50: 222CrossRefGoogle Scholar
  26. 26.
    Murao S, Murakawa T, Omata S (1969) Nippon Nôgeikagaku Kaishi 43 (9): 595CrossRefGoogle Scholar
  27. 27.
    Murao S, Sawa S, Murakawa T, Omata S (1971) Nippon Nôgeikagaku Kaishi 45 (3): 118CrossRefGoogle Scholar
  28. 28.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (6): 346CrossRefGoogle Scholar
  29. 29.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (7): 407CrossRefGoogle Scholar
  30. 30.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (8): 474CrossRefGoogle Scholar
  31. 31.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (10): 619CrossRefGoogle Scholar
  32. 32.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (10): 619CrossRefGoogle Scholar
  33. 33.
    Saito I, Iso N, Mizuno H, Kaneda H, Suyama Y, Kawamura S, Osawa S (1974) Agr Biol Chem 38 (10): 1941CrossRefGoogle Scholar
  34. 34.
    Ward RM, Anderson RF, Dean FK (1963) Biotech Bioeng V: 41CrossRefGoogle Scholar
  35. 35.
    Cheng C, Asada Y, Aida T (1989) Agric Biol Chem 53 (9): 2369CrossRefGoogle Scholar
  36. 36.
    Thorne CB, Leonard CG (1958) J Biol Chem 233 (5): 1109Google Scholar
  37. 37.
    Torii M (1959) J Biochem 46 (4): 513Google Scholar
  38. 38.
    Utsumi S, Torii M, Kurimura H, Yamamuro H, Amano T (1958) Biken’s J 1: 201Google Scholar
  39. 39.
    Utsumi S, Torii M, Kurimura H, Yamamuro H, Amano T (1959) Biken’s J 2: 165Google Scholar
  40. 40.
    Sawa S, Murakawa T, Murao S, Ornata S (1973) Nippon Nogeikagaku Kaishi 47 (3): 159CrossRefGoogle Scholar
  41. 41.
    Troy FA (1973) J Biol Chem 248 (1): 316Google Scholar
  42. 42.
    Thorne CB (1956) In: Symposia of the Society for General Microbiology. University Press, Cambridge, p 68Google Scholar
  43. 43.
    Thorne CB, Gomez CG, Molnar DM (1956) Bacteriol Proc Soc Am Bacteriol 107Google Scholar
  44. 44.
    Cromwick A-M, Gross RA (1995) Can J Microbiol 41: 902CrossRefGoogle Scholar
  45. 45.
    Grossowicz N, Wainfan E, Borek E, Waelsch H (1950) J Biol Chem 186: 111Google Scholar
  46. 46.
    Stumpf PK, Loomis NE (1950) Arch Biochem 25: 451Google Scholar
  47. 47.
    Hanes CS, Hird FJR, Isherwood FA (1950) Nature 166: 288CrossRefGoogle Scholar
  48. 48.
    Hanes CS, Hird FJR, Isherwood FA (1952) Biochem J 51: 25Google Scholar
  49. 49.
    Williams WJ, Thorne CB (1954) J Biol Chem 210: 203Google Scholar
  50. 50.
    Williams WJ, Litwin J, Thorne CB (1955) J Biol Chem 212: 427Google Scholar
  51. 51.
    Leonard CG, Housewright RD (1963) Biochim Biophys Acta 73: 530CrossRefGoogle Scholar
  52. 52.
    Housewright RD, Thorne CB (1950) J Bacteriol 60: 89Google Scholar
  53. 53.
    Thorne CB, Gomez CG, Housewright RD (1955) J Bacteriol 69: 357Google Scholar
  54. 54.
    Gardner JM, Troy FA (1979) J Biol Chem 254 (14): 6262Google Scholar
  55. 55.
    Volcani BE, Margalith P (1957) J Bacteriol 74: 646Google Scholar
  56. 56.
    Bruckner V, Kajtar M, Kovacs J, Nagy H, Wein J (1958) Tetrahedron 2: 211CrossRefGoogle Scholar
  57. 57.
    Tanaka T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S (1993) Biosci Biotech Biochem 57: 2148CrossRefGoogle Scholar
  58. 58.
    Torii M, Kurimura O, Utsumi S, Nozu H, Amano T (1959) Biken’s Journal 2: 265Google Scholar
  59. 59.
    Shah DT, McCarthy SP, Gross RA (1992) Polym Prep Am Chem Soc 33 (2): 488Google Scholar
  60. 60.
    Gross RA, McCarthy SP, Shah DT (1995) US Patent 5, 378, 807Google Scholar
  61. 61.
    Kubota H, Nambu Y, Endo TJ (1993) Polym Sci Part A: Polym Chem 31: 2877CrossRefGoogle Scholar
  62. 62.
    Borbély M, Nagasaki Y, Borbély J, Fan K, Bhogle A, Sevoian M (1994) Polym Bull 32: 127CrossRefGoogle Scholar
  63. 63.
    Tsubokawa N, Inagaki M, Endo T (1993) J Polym Sci Part A: Polym Chem 31: 563CrossRefGoogle Scholar
  64. 64.
    Swift G (1993) Accounts Chem Res 26: 105CrossRefGoogle Scholar
  65. 65.
    Ratner BD, Horbett TA (1995) In: Cooper SL, Bamford CH, Tsuruta T (eds) Polymer biomaterials in solution, as interfaces and as solids. VSP, Utrecht, The Netherlands, p xxiiiGoogle Scholar
  66. 66.
    Hikichi K, Hirouki T, Konno A (1990) Polymer 22 (2): 103CrossRefGoogle Scholar
  67. 67.
    Rosenthal WS, O’Connell DJ, Axelrod DR, Bovarnick M (1956) J Exptl Med 103: 667CrossRefGoogle Scholar
  68. 68.
    Kessler BJ, DiGrado CJ, Benante C, Bovarnick M, Silber RH, Zambito AJ (1955) Proc Soc Exptl Biol Med 88: 651Google Scholar
  69. 69.
    Kream J, Borek BA, DiGrado J, Bovernick M (1954) Arch Biochem Biophys 53: 333CrossRefGoogle Scholar
  70. 70.
    Bovernick M, Eisenberg F, O’Connell D, Victor J, Owades P (1954) J Biol Chem 207: 593Google Scholar
  71. 71.
    Crescenzi V, D’Alagni M, Dentini M, Maltei B (1996) In: Ottenbrite RM, Huang SJ, Park K (eds) Hydrogels and biodegradable polymers for bioapplications. American Chemical Society, Washing DC, p 233Google Scholar
  72. 72.
    Choi HJ, Kunioka M (1995) Radiat Phys Chem 46: 175CrossRefGoogle Scholar
  73. 73.
    Kunioka M, Choi HJ (1996) J Environ Polym Deg 4 (2): 123CrossRefGoogle Scholar
  74. 74.
    Farrell RE, Gross RA, McCarthy SP, unpublished resultsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • R. A. Gross

There are no affiliations available

Personalised recommendations