Advertisement

Bacterial γ-Poly(glutamic Acid)

  • R. A. Gross
Chapter
Part of the Macromolecular Systems — Materials Approach book series (MACROSYSTEMS)

Abstract

γ-Poly(glutamic acid), γ-PGA, is a bacterially synthesized water soluble nylon. It can be classified as a pseudo-poly(amino acid) which contains only glutamate repeat units. γ-PGA differs from proteins, however, in that the glutamate repeat units are polymerized by a ribosome-independent process. Furthermore, the glutamate repeat units are linked between the α-amino and γ-carboxylic acid functional groups (see below) [1].

Keywords

Glutamic Acid Repeat Unit Increase With Increase Alanine Racemase Transamination Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Troy FA (1973) J Biol Chem 248 (1): 305Google Scholar
  2. 2.
    Hanby WE, Rydon HN (1946) Biochem 40: 297Google Scholar
  3. 3.
    Thorne CB, Gomez CG, Noyes HE, Housewright RD (1954) J Bacteriol 68 (3): 307Google Scholar
  4. 4.
    Torii M (1959) J Biochem 46 (2): 189Google Scholar
  5. 5.
    Hara T, Ueda S (1982) Agricul Biol Chem 46 (9): 2275CrossRefGoogle Scholar
  6. 6.
    Kramar E (1921) Centr Bakteriol Parasitenk Abt I Orig 88: 401Google Scholar
  7. 7.
    Ivanovics G, Bruckner V (1937) Z Immunitatsforsch 25: 250Google Scholar
  8. 8.
    Ivanovics G (1965) In: Florkin M, Stotzm EH (eds) Comprehensive biochemistry: lipids and amino acids and related compounds. Elsevier, New York, vol 6, p 286Google Scholar
  9. 9.
    Ezepchuk YV (1968) Zh Microbiol Epidemiol Immunobiol 45: 110Google Scholar
  10. 10.
    Housewright RD (1962) In: Gunsalus IC, Stanier RY (eds) The bacteria. Academic Press, New York, vol. III, p 389Google Scholar
  11. 11.
    Nitecki DE, Goodman JW (1971) In: Weinstein B (ed.) Chemistry and biochemistry of amino acids, peptides, and proteins. Marcel Dekker, New York, vol. I, p 87Google Scholar
  12. 12.
    Troy FA (1982) In: Kleinkauf H, von Dohren H (eds) Peptide antibiotics biosynthesis and functions. Walter de Gruyter, New York, p 49Google Scholar
  13. 13.
    Buchanan RE, Gibbons NE (eds.) Bergey’s manual of determinative bacteriology, 8th edn. William Wilkins, Baltimore, p 530Google Scholar
  14. 14.
    Vasantha N, Freese E (1978) J Gen Micro 112: 329CrossRefGoogle Scholar
  15. 15.
    Foerster HF (1972) J Bacteriol 111 (2): 437Google Scholar
  16. 16.
    Bernlohr RW (1967) J Bacteriol 93 (3): 1031Google Scholar
  17. 17.
    Leonard CG, Housewright RD, Thorne CG (1958) J Bacteriol 76: 499Google Scholar
  18. 18.
    Lafferty RM, Korstko B, Korsatko W (1984) In: Rose AH, Tempest DW (eds) Advances in microbial physiology. Academic Press, Cleveland OH, vol 25, chap 6, p 136Google Scholar
  19. 19.
    McLean RJC, Beauchemin D, Clapham L, Beveridge TJ (1990) Appl Enrion Micro 56 (12): 3671Google Scholar
  20. 20.
    Birrer GA, Cromwick A-M, Gross RA (1994) Int J Biol Macromol 16 (5): 265CrossRefGoogle Scholar
  21. 21.
    Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M (1993) Biosci Biotech Biochem 57 (7): 1212CrossRefGoogle Scholar
  22. 22.
    Cromwick A-M, Gross RA (1995) Int J Biol Macromol 17 (5): 259CrossRefGoogle Scholar
  23. 23.
    Goto A, Kunioka M (1992) Biosc Biotech Biochem 56 (7): 1031CrossRefGoogle Scholar
  24. 24.
    Sawa S, Murao S, Murakawa T, Omata S (1971) Nippon Nôgeikagaku Kaishi 45 (3): 123Google Scholar
  25. 25.
    Cromwick A-M, Birrer GA, Gross RA (1996) Biotechnol Bioeng 50: 222CrossRefGoogle Scholar
  26. 26.
    Murao S, Murakawa T, Omata S (1969) Nippon Nôgeikagaku Kaishi 43 (9): 595CrossRefGoogle Scholar
  27. 27.
    Murao S, Sawa S, Murakawa T, Omata S (1971) Nippon Nôgeikagaku Kaishi 45 (3): 118CrossRefGoogle Scholar
  28. 28.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (6): 346CrossRefGoogle Scholar
  29. 29.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (7): 407CrossRefGoogle Scholar
  30. 30.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (8): 474CrossRefGoogle Scholar
  31. 31.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (10): 619CrossRefGoogle Scholar
  32. 32.
    Fujii H (1963) Nippon Nôgeikagaku Kaishi 37 (10): 619CrossRefGoogle Scholar
  33. 33.
    Saito I, Iso N, Mizuno H, Kaneda H, Suyama Y, Kawamura S, Osawa S (1974) Agr Biol Chem 38 (10): 1941CrossRefGoogle Scholar
  34. 34.
    Ward RM, Anderson RF, Dean FK (1963) Biotech Bioeng V: 41CrossRefGoogle Scholar
  35. 35.
    Cheng C, Asada Y, Aida T (1989) Agric Biol Chem 53 (9): 2369CrossRefGoogle Scholar
  36. 36.
    Thorne CB, Leonard CG (1958) J Biol Chem 233 (5): 1109Google Scholar
  37. 37.
    Torii M (1959) J Biochem 46 (4): 513Google Scholar
  38. 38.
    Utsumi S, Torii M, Kurimura H, Yamamuro H, Amano T (1958) Biken’s J 1: 201Google Scholar
  39. 39.
    Utsumi S, Torii M, Kurimura H, Yamamuro H, Amano T (1959) Biken’s J 2: 165Google Scholar
  40. 40.
    Sawa S, Murakawa T, Murao S, Ornata S (1973) Nippon Nogeikagaku Kaishi 47 (3): 159CrossRefGoogle Scholar
  41. 41.
    Troy FA (1973) J Biol Chem 248 (1): 316Google Scholar
  42. 42.
    Thorne CB (1956) In: Symposia of the Society for General Microbiology. University Press, Cambridge, p 68Google Scholar
  43. 43.
    Thorne CB, Gomez CG, Molnar DM (1956) Bacteriol Proc Soc Am Bacteriol 107Google Scholar
  44. 44.
    Cromwick A-M, Gross RA (1995) Can J Microbiol 41: 902CrossRefGoogle Scholar
  45. 45.
    Grossowicz N, Wainfan E, Borek E, Waelsch H (1950) J Biol Chem 186: 111Google Scholar
  46. 46.
    Stumpf PK, Loomis NE (1950) Arch Biochem 25: 451Google Scholar
  47. 47.
    Hanes CS, Hird FJR, Isherwood FA (1950) Nature 166: 288CrossRefGoogle Scholar
  48. 48.
    Hanes CS, Hird FJR, Isherwood FA (1952) Biochem J 51: 25Google Scholar
  49. 49.
    Williams WJ, Thorne CB (1954) J Biol Chem 210: 203Google Scholar
  50. 50.
    Williams WJ, Litwin J, Thorne CB (1955) J Biol Chem 212: 427Google Scholar
  51. 51.
    Leonard CG, Housewright RD (1963) Biochim Biophys Acta 73: 530CrossRefGoogle Scholar
  52. 52.
    Housewright RD, Thorne CB (1950) J Bacteriol 60: 89Google Scholar
  53. 53.
    Thorne CB, Gomez CG, Housewright RD (1955) J Bacteriol 69: 357Google Scholar
  54. 54.
    Gardner JM, Troy FA (1979) J Biol Chem 254 (14): 6262Google Scholar
  55. 55.
    Volcani BE, Margalith P (1957) J Bacteriol 74: 646Google Scholar
  56. 56.
    Bruckner V, Kajtar M, Kovacs J, Nagy H, Wein J (1958) Tetrahedron 2: 211CrossRefGoogle Scholar
  57. 57.
    Tanaka T, Hiruta O, Futamura T, Uotani K, Satoh A, Taniguchi M, Oi S (1993) Biosci Biotech Biochem 57: 2148CrossRefGoogle Scholar
  58. 58.
    Torii M, Kurimura O, Utsumi S, Nozu H, Amano T (1959) Biken’s Journal 2: 265Google Scholar
  59. 59.
    Shah DT, McCarthy SP, Gross RA (1992) Polym Prep Am Chem Soc 33 (2): 488Google Scholar
  60. 60.
    Gross RA, McCarthy SP, Shah DT (1995) US Patent 5, 378, 807Google Scholar
  61. 61.
    Kubota H, Nambu Y, Endo TJ (1993) Polym Sci Part A: Polym Chem 31: 2877CrossRefGoogle Scholar
  62. 62.
    Borbély M, Nagasaki Y, Borbély J, Fan K, Bhogle A, Sevoian M (1994) Polym Bull 32: 127CrossRefGoogle Scholar
  63. 63.
    Tsubokawa N, Inagaki M, Endo T (1993) J Polym Sci Part A: Polym Chem 31: 563CrossRefGoogle Scholar
  64. 64.
    Swift G (1993) Accounts Chem Res 26: 105CrossRefGoogle Scholar
  65. 65.
    Ratner BD, Horbett TA (1995) In: Cooper SL, Bamford CH, Tsuruta T (eds) Polymer biomaterials in solution, as interfaces and as solids. VSP, Utrecht, The Netherlands, p xxiiiGoogle Scholar
  66. 66.
    Hikichi K, Hirouki T, Konno A (1990) Polymer 22 (2): 103CrossRefGoogle Scholar
  67. 67.
    Rosenthal WS, O’Connell DJ, Axelrod DR, Bovarnick M (1956) J Exptl Med 103: 667CrossRefGoogle Scholar
  68. 68.
    Kessler BJ, DiGrado CJ, Benante C, Bovarnick M, Silber RH, Zambito AJ (1955) Proc Soc Exptl Biol Med 88: 651Google Scholar
  69. 69.
    Kream J, Borek BA, DiGrado J, Bovernick M (1954) Arch Biochem Biophys 53: 333CrossRefGoogle Scholar
  70. 70.
    Bovernick M, Eisenberg F, O’Connell D, Victor J, Owades P (1954) J Biol Chem 207: 593Google Scholar
  71. 71.
    Crescenzi V, D’Alagni M, Dentini M, Maltei B (1996) In: Ottenbrite RM, Huang SJ, Park K (eds) Hydrogels and biodegradable polymers for bioapplications. American Chemical Society, Washing DC, p 233Google Scholar
  72. 72.
    Choi HJ, Kunioka M (1995) Radiat Phys Chem 46: 175CrossRefGoogle Scholar
  73. 73.
    Kunioka M, Choi HJ (1996) J Environ Polym Deg 4 (2): 123CrossRefGoogle Scholar
  74. 74.
    Farrell RE, Gross RA, McCarthy SP, unpublished resultsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • R. A. Gross

There are no affiliations available

Personalised recommendations