Alginates

  • D. F. Day
Chapter
Part of the Macromolecular Systems — Materials Approach book series (MACROSYSTEMS)

Abstract

Alginates are linear polyuronic acid hydrocolloids. They are produced by some brown seaweeds and certain species of bacteria. The polymer from seaweed is used extensively as thickening, stabilizing, and emulsifying agents in both the chemical and food industries. Alginic acid (algin, alginate) is a heteropolysaccharide composed of linear sequences of D-mannuronic acid and its C5 epimer, L-guluronic acid. The monomeric units are linked 1,4. Alginic acid polymers form interchain associations in the presence of di and trivalent cations (particularly calcium), producing hydrated gels. This ability to gel in the presence of cations has led to a wide range of uses for this industrial polymer.

Keywords

Welding Uranium Shrinkage Explosive Pseudomonas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Black (1953) Chem Soc Ann Reps p 332Google Scholar
  2. 2.
    Steiner, McNeely (1954) Am Chem Soc Advances in Chemistry Series 11: 72Google Scholar
  3. 3.
    Baardseth E (1966) Proc 5th Int Seaweed Symp, p 19Google Scholar
  4. 4.
    Baardseth E (1968) Proc 6th Int Seaweed Symp, p 53Google Scholar
  5. 5.
    Smidsrod 0, Haug A (1959) Acta Chem Scand 13 :1250Google Scholar
  6. 6.
    Smidsrod O, Haug A (1961) Acta Chem Scand 15: 1794CrossRefGoogle Scholar
  7. 7.
    Clare K (1993) Algin In: Whistler RL, BeMiller JN (eds) Industrial Gums, 3rd edn. Academic Press, New York, p 105CrossRefGoogle Scholar
  8. 8.
    Linker A, Jones RS (1964) Nature 204: 187CrossRefGoogle Scholar
  9. 9.
    Sadoff HL (1975) Bacteriol Rev 39: 516Google Scholar
  10. 10.
    Govan JRW, Fyfe J, Jarman T (1981) J Gen Microbiol 125: 217Google Scholar
  11. 11.
    Boyd A, Chakrabarty AM (1994) Appl Environ Microbiol 60: 2355Google Scholar
  12. 12.
    Sutherland IW (1982) Adv Micro Physio. 23: 79CrossRefGoogle Scholar
  13. 13.
    Sutherland IW (1990) Biotechnology of microbial exopolysacchariddes. Cambridge University PressGoogle Scholar
  14. 14.
    Narbad A, Hewlins MJE, Gacesa P, Russell NJ (1990) Biochem J 267: 579Google Scholar
  15. 15.
    Skjak-Braek G, Grasdalen H, Larsen B (1986) Carbohydr Res 154: 239CrossRefGoogle Scholar
  16. 16.
    Carlson DM, Matthews LE (1966) Biochemistry 5: 2817CrossRefGoogle Scholar
  17. 17.
    Gacesa P, Russell NJ (1990) In: Gacesa P, Russell NJ (eds) Pseudomonas infection and alginates. Chapman and Hall, p 29Google Scholar
  18. 18.
    Piggott NH, Sutherland IW, Jarman TR (1981) J Appl Microbiol Biotechnol 13: 179CrossRefGoogle Scholar
  19. 19.
    May TB, Chakrabarty AM (1994) Trends in Microbiology 2: 151CrossRefGoogle Scholar
  20. 20.
    Shinabarger D, Berry ATB, May R, Rothmel A, Fialho A, Chakrabarty AM (1991) J Biol Chem 266: 2080Google Scholar
  21. 21.
    Deretic V, Schurr MJ, Boucher JC, Martin DW (1994) J Bacteriol 176: 2773Google Scholar
  22. 22.
    Zielinski NA, Roychoudhury S, Chackrabarty AM (1994) Methods in Enzymology 235: 493CrossRefGoogle Scholar
  23. 23.
    Franklin MJ, Ohman DE (1993) J Bacteriol 175: 5057Google Scholar
  24. 24.
    Wozniak DJ, Ohman DE (1994) 1 Bacteriol 176:6007Google Scholar
  25. 25.
    Schlictman D, Kavanaugh-Black A, Shankar S, Chakrabarty AM (1994) J Bacteriol 176: 6023Google Scholar
  26. 26.
    Grasdalen H, Larsen B, Smidsrod 0 (1977) Carbohydr Res 56: Cl lGoogle Scholar
  27. 27.
    Penman A, Sanderson GR (1972) Carbohydrate Res 25: 273CrossRefGoogle Scholar
  28. 28.
    Boyd J, Turvey JR (1978) Carbohydr Res 66: 187–194CrossRefGoogle Scholar
  29. 29.
    Atkins EDT, Nieduszynski IA, Mackie WK, Parker D, Smolko EE (1973) Biopolymers 12: 1865CrossRefGoogle Scholar
  30. 30.
    Mackie W (1971) Biochem J 125, 89 PGoogle Scholar
  31. 31.
    Atkins EDT, Nieduszynski IA, Mackie W, Parker KD, Smolko EE (1975) Biopolymers 12: 1879CrossRefGoogle Scholar
  32. 32.
    Kohn R, Larsen B (1972) Acta Chem Scand 26: 2455CrossRefGoogle Scholar
  33. 33.
    Kohn R (1975) Pure Appl Chem 42: 371CrossRefGoogle Scholar
  34. 34.
    Morris ER, Rees DA, Thom D, Boyd 1 (1978) Carbohydr Res 66; 145CrossRefGoogle Scholar
  35. 35.
    Bryce TA, McKinnon A, Morris ER, Rees DA, Thom D (1974) Faraday Discuss Chem Soc 57: 221CrossRefGoogle Scholar
  36. 36.
    Rees DA (1977) Polysaccharide shapes, outline studies in biology. Chapman and Hall, LondonGoogle Scholar
  37. 37.
    Morris ER, Rees DA, Thom D, Welsh EJ (1977) 1 Supramol Struct. 6: 259Google Scholar
  38. 38.
    Sutherland I (1989) Antibiotic Chemother 42: 50Google Scholar
  39. 39.
    Skjak-Braek G (1992) Biochem Plant Polysacch 20: 27Google Scholar
  40. 40.
    Nilsson S (1992) Biopolymers 32: 1311CrossRefGoogle Scholar
  41. 41.
    Marty N, Dournes J, Chabanon G, Montrozier H (1992) FEMS Microbiol Lett 98: 35CrossRefGoogle Scholar
  42. 42.
    Haug A, Larsen B. (1962) Acta Chem Scand 16: 1908CrossRefGoogle Scholar
  43. 43.
    Zeller SG, Gray GR (1992) Carbohydr Res 226: 313CrossRefGoogle Scholar
  44. 44.
    Haug A, Larsen B (1971) Carbohydr Res 17: 29CrossRefGoogle Scholar
  45. 45.
    Lee JW, Ashby RD, Day DF (1996) Carbohydr Polymers. (in press)Google Scholar
  46. 46.
    Fett WF, Osman SF, Fishman ML, Siebles TS III. (1986) Appl and Environ Microbiol 52: 466Google Scholar
  47. 47.
    Green HC (1936) US Patent 2,036,934; Chem Abstr 30 : 3343Google Scholar
  48. 48.
    LeGloahec VCE, Herter JR (1938) US Patent 2,128,551 Chem Abstr 32 : 8635Google Scholar
  49. 49.
    Lee JW, Day DF (1995) Applied and Environ Microbiol 61: 650Google Scholar
  50. 50.
    Ashby R (1994) The production and characterization of alginate produced by Pseudomonas syringae. Dissertation, Louisiana State University, Baton RougeGoogle Scholar
  51. 51.
    Ott CM, Day DF (1995) Trends in Polymer Science 3 : 402Google Scholar
  52. 52.
    Cook WH, Smith DB (1954) Can J Biochem Physiol 32 : 227Google Scholar
  53. 53.
    Haug A, Larsen B (1961) Acta Chem Scand 15 :1395Google Scholar
  54. 54.
    Chamberlain NH, Johnson A, Speakman B (1945) J Soc Dyers Colour 61: 13CrossRefGoogle Scholar
  55. 55.
    Haug A (1965) In: Whistler RC (ed) Methods of carbohydrate chemistry, vol V. Academic Press, New York, p 69Google Scholar
  56. 56.
    Schweiger RG (1962) J Org Chem 27: 1789CrossRefGoogle Scholar
  57. 57.
    Cottrell IW, Kovacs P (1980) In: Davidson RL (ed) Handbook of water-soluble gums and resins. McGraw-Hill, New York, p 2Google Scholar
  58. 58.
    Thiele H, Anderson G (1955) Kolloidzeitschrift 140: 76CrossRefGoogle Scholar
  59. 59.
    Haug A, Smidsrod 0 (1965) Acta Chem Scand 19 : 341Google Scholar
  60. 60.
    Haug A (1961) Acta Chem Scand 15: 1794CrossRefGoogle Scholar
  61. 61.
    Clare K (1993) In: Whistler RL, BeMiller JN (eds) Industrial gums. Academic Press, New York,p 105–143CrossRefGoogle Scholar
  62. 62.
    Connick WJ Jr (1988) Formulation of living biological control agents with alginate. American Chemical Soc Symp Ser 371, p 208Google Scholar
  63. 63.
    Wheatly MA, Langer RS, Eisen HN (1986) European patent EP 199, 362Google Scholar
  64. 64.
    Darnall DW, Greene B, Henzi M, Hosea JM, McPherson RA , Sneddon J, Alexander MD (1986).Environ Sci Technol 20 : 205Google Scholar
  65. 65.
    Holan ZR, Volesky B (1994) Biotechnol Bioengr 43: 1001CrossRefGoogle Scholar
  66. 66.
    Nakajima A, Horikoshi T, Sakaguchi T (1982) Eur J Appl Microbiol Biotechnol 16: 88CrossRefGoogle Scholar
  67. 67.
    Torresday JL, Darnall DW, Wang J (1988) Anal Chem 60: 72CrossRefGoogle Scholar
  68. 68.
    Volesky B, Prasetyo I (1994) Biotechnol Bioengr 43: 1010–1015CrossRefGoogle Scholar
  69. 69.
    Kohn R (1975) Pure Appl Chem 42: 371–397CrossRefGoogle Scholar
  70. 70.
    Kuyucak N, Volesky B (1989) Biotechnol Bioengr 33: 823CrossRefGoogle Scholar
  71. 71.
    Watkins W, Elder RC, Greene B, Darnall DW (1987) Inorg Chem 26: 1147CrossRefGoogle Scholar
  72. 72.
    Toresday JL, Hapak MK, Hosea JM, Darnall DW (1990) Environ Sci Technol 24: 1372CrossRefGoogle Scholar
  73. 73.
    Haug A, Smidsrod 0 (1968) Acta Chem Scand 22 :1989Google Scholar
  74. 74.
    Draget KI, Skjak-Braek G, Smidsrod O (1994) Carbohydr Polym 25Google Scholar
  75. 75.
    Stokke BT, Smidsrod O, Zanetti F, Strand W, Skjak-Braek G (1993) Carbohydr Polym 21: 39CrossRefGoogle Scholar
  76. 76.
    Skjak-Braek G, Zanetti F, Paoletti S (1989) Carbohydr Res 185: 131CrossRefGoogle Scholar
  77. 77.
    Morris ER, Rees DA, Thom D (1978) Carbohydr Res 66: 145CrossRefGoogle Scholar
  78. 78.
    Morris EA, Rees DA (1980) J Mol Biol 138: 363CrossRefGoogle Scholar
  79. 79.
    Lee JW, Ashby RD, Day DF (1996) Carbohydrate Polymers (in press)Google Scholar
  80. 80.
    McDowell RH (1970) US Patent 3, 503, 769Google Scholar
  81. 81.
    Schweiger RG (1967) US Patent 3, 349, 078Google Scholar
  82. 82.
    Schweiger RG, O’Connell JJ (1968) US Patent 3, 386, 921Google Scholar
  83. 83.
    Sandford PA, Baird J (1983) In: Aspinall G (ed) The polysaccharides. Academic Press, New York, p411Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • D. F. Day

There are no affiliations available

Personalised recommendations