Skip to main content

Part of the book series: Macromolecular Systems — Materials Approach ((MACROSYSTEMS))

Abstract

Alginates are linear polyuronic acid hydrocolloids. They are produced by some brown seaweeds and certain species of bacteria. The polymer from seaweed is used extensively as thickening, stabilizing, and emulsifying agents in both the chemical and food industries. Alginic acid (algin, alginate) is a heteropolysaccharide composed of linear sequences of D-mannuronic acid and its C5 epimer, L-guluronic acid. The monomeric units are linked 1,4. Alginic acid polymers form interchain associations in the presence of di and trivalent cations (particularly calcium), producing hydrated gels. This ability to gel in the presence of cations has led to a wide range of uses for this industrial polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black (1953) Chem Soc Ann Reps p 332

    Google Scholar 

  2. Steiner, McNeely (1954) Am Chem Soc Advances in Chemistry Series 11: 72

    Google Scholar 

  3. Baardseth E (1966) Proc 5th Int Seaweed Symp, p 19

    Google Scholar 

  4. Baardseth E (1968) Proc 6th Int Seaweed Symp, p 53

    Google Scholar 

  5. Smidsrod 0, Haug A (1959) Acta Chem Scand 13 :1250

    Google Scholar 

  6. Smidsrod O, Haug A (1961) Acta Chem Scand 15: 1794

    Article  Google Scholar 

  7. Clare K (1993) Algin In: Whistler RL, BeMiller JN (eds) Industrial Gums, 3rd edn. Academic Press, New York, p 105

    Book  Google Scholar 

  8. Linker A, Jones RS (1964) Nature 204: 187

    Article  CAS  Google Scholar 

  9. Sadoff HL (1975) Bacteriol Rev 39: 516

    CAS  Google Scholar 

  10. Govan JRW, Fyfe J, Jarman T (1981) J Gen Microbiol 125: 217

    CAS  Google Scholar 

  11. Boyd A, Chakrabarty AM (1994) Appl Environ Microbiol 60: 2355

    CAS  Google Scholar 

  12. Sutherland IW (1982) Adv Micro Physio. 23: 79

    Article  CAS  Google Scholar 

  13. Sutherland IW (1990) Biotechnology of microbial exopolysacchariddes. Cambridge University Press

    Google Scholar 

  14. Narbad A, Hewlins MJE, Gacesa P, Russell NJ (1990) Biochem J 267: 579

    CAS  Google Scholar 

  15. Skjak-Braek G, Grasdalen H, Larsen B (1986) Carbohydr Res 154: 239

    Article  CAS  Google Scholar 

  16. Carlson DM, Matthews LE (1966) Biochemistry 5: 2817

    Article  CAS  Google Scholar 

  17. Gacesa P, Russell NJ (1990) In: Gacesa P, Russell NJ (eds) Pseudomonas infection and alginates. Chapman and Hall, p 29

    Google Scholar 

  18. Piggott NH, Sutherland IW, Jarman TR (1981) J Appl Microbiol Biotechnol 13: 179

    Article  CAS  Google Scholar 

  19. May TB, Chakrabarty AM (1994) Trends in Microbiology 2: 151

    Article  CAS  Google Scholar 

  20. Shinabarger D, Berry ATB, May R, Rothmel A, Fialho A, Chakrabarty AM (1991) J Biol Chem 266: 2080

    CAS  Google Scholar 

  21. Deretic V, Schurr MJ, Boucher JC, Martin DW (1994) J Bacteriol 176: 2773

    CAS  Google Scholar 

  22. Zielinski NA, Roychoudhury S, Chackrabarty AM (1994) Methods in Enzymology 235: 493

    Article  CAS  Google Scholar 

  23. Franklin MJ, Ohman DE (1993) J Bacteriol 175: 5057

    CAS  Google Scholar 

  24. Wozniak DJ, Ohman DE (1994) 1 Bacteriol 176:6007

    Google Scholar 

  25. Schlictman D, Kavanaugh-Black A, Shankar S, Chakrabarty AM (1994) J Bacteriol 176: 6023

    CAS  Google Scholar 

  26. Grasdalen H, Larsen B, Smidsrod 0 (1977) Carbohydr Res 56: Cl l

    Google Scholar 

  27. Penman A, Sanderson GR (1972) Carbohydrate Res 25: 273

    Article  CAS  Google Scholar 

  28. Boyd J, Turvey JR (1978) Carbohydr Res 66: 187–194

    Article  CAS  Google Scholar 

  29. Atkins EDT, Nieduszynski IA, Mackie WK, Parker D, Smolko EE (1973) Biopolymers 12: 1865

    Article  CAS  Google Scholar 

  30. Mackie W (1971) Biochem J 125, 89 P

    Google Scholar 

  31. Atkins EDT, Nieduszynski IA, Mackie W, Parker KD, Smolko EE (1975) Biopolymers 12: 1879

    Article  Google Scholar 

  32. Kohn R, Larsen B (1972) Acta Chem Scand 26: 2455

    Article  CAS  Google Scholar 

  33. Kohn R (1975) Pure Appl Chem 42: 371

    Article  CAS  Google Scholar 

  34. Morris ER, Rees DA, Thom D, Boyd 1 (1978) Carbohydr Res 66; 145

    Article  CAS  Google Scholar 

  35. Bryce TA, McKinnon A, Morris ER, Rees DA, Thom D (1974) Faraday Discuss Chem Soc 57: 221

    Article  CAS  Google Scholar 

  36. Rees DA (1977) Polysaccharide shapes, outline studies in biology. Chapman and Hall, London

    Google Scholar 

  37. Morris ER, Rees DA, Thom D, Welsh EJ (1977) 1 Supramol Struct. 6: 259

    Google Scholar 

  38. Sutherland I (1989) Antibiotic Chemother 42: 50

    CAS  Google Scholar 

  39. Skjak-Braek G (1992) Biochem Plant Polysacch 20: 27

    CAS  Google Scholar 

  40. Nilsson S (1992) Biopolymers 32: 1311

    Article  CAS  Google Scholar 

  41. Marty N, Dournes J, Chabanon G, Montrozier H (1992) FEMS Microbiol Lett 98: 35

    Article  CAS  Google Scholar 

  42. Haug A, Larsen B. (1962) Acta Chem Scand 16: 1908

    Article  CAS  Google Scholar 

  43. Zeller SG, Gray GR (1992) Carbohydr Res 226: 313

    Article  CAS  Google Scholar 

  44. Haug A, Larsen B (1971) Carbohydr Res 17: 29

    Article  Google Scholar 

  45. Lee JW, Ashby RD, Day DF (1996) Carbohydr Polymers. (in press)

    Google Scholar 

  46. Fett WF, Osman SF, Fishman ML, Siebles TS III. (1986) Appl and Environ Microbiol 52: 466

    CAS  Google Scholar 

  47. Green HC (1936) US Patent 2,036,934; Chem Abstr 30 : 3343

    Google Scholar 

  48. LeGloahec VCE, Herter JR (1938) US Patent 2,128,551 Chem Abstr 32 : 8635

    Google Scholar 

  49. Lee JW, Day DF (1995) Applied and Environ Microbiol 61: 650

    CAS  Google Scholar 

  50. Ashby R (1994) The production and characterization of alginate produced by Pseudomonas syringae. Dissertation, Louisiana State University, Baton Rouge

    Google Scholar 

  51. Ott CM, Day DF (1995) Trends in Polymer Science 3 : 402

    Google Scholar 

  52. Cook WH, Smith DB (1954) Can J Biochem Physiol 32 : 227

    Google Scholar 

  53. Haug A, Larsen B (1961) Acta Chem Scand 15 :1395

    Google Scholar 

  54. Chamberlain NH, Johnson A, Speakman B (1945) J Soc Dyers Colour 61: 13

    Article  CAS  Google Scholar 

  55. Haug A (1965) In: Whistler RC (ed) Methods of carbohydrate chemistry, vol V. Academic Press, New York, p 69

    Google Scholar 

  56. Schweiger RG (1962) J Org Chem 27: 1789

    Article  CAS  Google Scholar 

  57. Cottrell IW, Kovacs P (1980) In: Davidson RL (ed) Handbook of water-soluble gums and resins. McGraw-Hill, New York, p 2

    Google Scholar 

  58. Thiele H, Anderson G (1955) Kolloidzeitschrift 140: 76

    Article  CAS  Google Scholar 

  59. Haug A, Smidsrod 0 (1965) Acta Chem Scand 19 : 341

    Google Scholar 

  60. Haug A (1961) Acta Chem Scand 15: 1794

    Article  CAS  Google Scholar 

  61. Clare K (1993) In: Whistler RL, BeMiller JN (eds) Industrial gums. Academic Press, New York,p 105–143

    Book  Google Scholar 

  62. Connick WJ Jr (1988) Formulation of living biological control agents with alginate. American Chemical Soc Symp Ser 371, p 208

    Google Scholar 

  63. Wheatly MA, Langer RS, Eisen HN (1986) European patent EP 199, 362

    Google Scholar 

  64. Darnall DW, Greene B, Henzi M, Hosea JM, McPherson RA , Sneddon J, Alexander MD (1986).Environ Sci Technol 20 : 205

    Google Scholar 

  65. Holan ZR, Volesky B (1994) Biotechnol Bioengr 43: 1001

    Article  CAS  Google Scholar 

  66. Nakajima A, Horikoshi T, Sakaguchi T (1982) Eur J Appl Microbiol Biotechnol 16: 88

    Article  CAS  Google Scholar 

  67. Torresday JL, Darnall DW, Wang J (1988) Anal Chem 60: 72

    Article  Google Scholar 

  68. Volesky B, Prasetyo I (1994) Biotechnol Bioengr 43: 1010–1015

    Article  CAS  Google Scholar 

  69. Kohn R (1975) Pure Appl Chem 42: 371–397

    Article  CAS  Google Scholar 

  70. Kuyucak N, Volesky B (1989) Biotechnol Bioengr 33: 823

    Article  CAS  Google Scholar 

  71. Watkins W, Elder RC, Greene B, Darnall DW (1987) Inorg Chem 26: 1147

    Article  CAS  Google Scholar 

  72. Toresday JL, Hapak MK, Hosea JM, Darnall DW (1990) Environ Sci Technol 24: 1372

    Article  Google Scholar 

  73. Haug A, Smidsrod 0 (1968) Acta Chem Scand 22 :1989

    Google Scholar 

  74. Draget KI, Skjak-Braek G, Smidsrod O (1994) Carbohydr Polym 25

    Google Scholar 

  75. Stokke BT, Smidsrod O, Zanetti F, Strand W, Skjak-Braek G (1993) Carbohydr Polym 21: 39

    Article  CAS  Google Scholar 

  76. Skjak-Braek G, Zanetti F, Paoletti S (1989) Carbohydr Res 185: 131

    Article  Google Scholar 

  77. Morris ER, Rees DA, Thom D (1978) Carbohydr Res 66: 145

    Article  CAS  Google Scholar 

  78. Morris EA, Rees DA (1980) J Mol Biol 138: 363

    Article  CAS  Google Scholar 

  79. Lee JW, Ashby RD, Day DF (1996) Carbohydrate Polymers (in press)

    Google Scholar 

  80. McDowell RH (1970) US Patent 3, 503, 769

    Google Scholar 

  81. Schweiger RG (1967) US Patent 3, 349, 078

    Google Scholar 

  82. Schweiger RG, O’Connell JJ (1968) US Patent 3, 386, 921

    Google Scholar 

  83. Sandford PA, Baird J (1983) In: Aspinall G (ed) The polysaccharides. Academic Press, New York, p411

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Day, D.F. (1998). Alginates. In: Kaplan, D.L. (eds) Biopolymers from Renewable Resources. Macromolecular Systems — Materials Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03680-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03680-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08341-9

  • Online ISBN: 978-3-662-03680-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics