Skip to main content

Genetic Control of Meiosis and the Onset of Spermiogenesis in Drosophila

  • Conference paper
Testicular Function: From Gene Expression to Genetic Manipulation

Part of the book series: Ernst Schering Research Foundation Workshop ((3368,volume 3))

  • 87 Accesses

Abstract

Male gametogenesis constitutes one of the most dramatic examples of cellular differentiation in the body. During spermiogenesis male germ cells change from round to long and streamlined and almost every subcellular organelle is remodeled. In addition, male germ cells undergo three different types of cell division program in the course of spermatogenesis: stem cell divisions, mitotic amplification divisions, and meio-sis. During the specialized cell division of meiosis, regulation of cell cycle progression is drastically altered by the differentiation program. Work in our laboratory seeks to discover the genes and genetic circuitry that drive the dramatic cellular differentiation of spermatogenesis and coordinate it with the meiotic cell cycle program. To facilitate this genetic approach we study spermatogenesis in Drosophila as a model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alphey L, Jimenez J, White-Cooper H, Dawson I, Nurse P, Glover DM (1992) twine, a cdc25 homologue that functions in the male and female germlines of Drosophila. Cell 69:977–988

    Article  PubMed  CAS  Google Scholar 

  • Bendena WG, Ayme SA, Garbe JC, Pardue ML (1991) Expression of heatshock locus hsr-omega in nonstressed cells during development in Drosophila melanogaster. Dev Biol 144:65–77

    Article  PubMed  CAS  Google Scholar 

  • Castrillon DH, Gonczy P, Alexander S, Rawson R, Eberhart CG, Viswanathan S, DiNardo S, Wasserman SA (1993) Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of malesterile mutants generated by single P element mutagenesis. Genetics 135:489–505

    PubMed  CAS  Google Scholar 

  • Colgan TJ, Bedard YC, Strawbridge TG, Buckspan MB, Klotz PG (1980) Reappraisal of the value of testicular biopsy in the investigation of infertility. Fertil Steril 33:56–60

    PubMed  CAS  Google Scholar 

  • Courtot C, Frankhauser C, Simanis V, Lehner C (1992) The Drosophila cdc25 homolog twine is required for meiosis. Development 116:405–416

    PubMed  CAS  Google Scholar 

  • Dunphy WG, Kumagai A (1991) The cdc25 protein contains an intrinsic phosphatase activity. Cell 67:189–196

    Article  PubMed  CAS  Google Scholar 

  • Eberhart CG, Maines JZ, Wasserman SA (1996) Meiotic cell cycle requirement for a fly homologue of human deleted in azoospermia. Nature 381:783–785

    Article  PubMed  CAS  Google Scholar 

  • Edgar BA, O’Farrell PH (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell 57:177–187

    Article  PubMed  CAS  Google Scholar 

  • Fuller MT (1993) Spermatogenesis. In: Bate M, Martinez-Arias A (eds) The development of Drosophila, vol 1. Cold Spring Harbor, Cold Spring Harbor, pp 71–147

    Google Scholar 

  • Fuller MT (1998) Genetic control of cell proliferation and differentiation in Drosophila spermatogenesis. In: Bellve A (ed) The male germ cell: migration to fertilization. Academic, London (in press)

    Google Scholar 

  • Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW (1991) cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67:197–211

    Article  PubMed  CAS  Google Scholar 

  • Geremia R, Boitani C, Conti M, Monesi V (1977) RNA synthesis in spermatocytes and spermatids and preservation of meiotic RNA during spermatogenesis in the mouse. Cell Differentiation 5:343–355

    Article  PubMed  CAS  Google Scholar 

  • Gonczy P, DiNardo S (1996) The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development 122:2437–2447

    PubMed  CAS  Google Scholar 

  • Gonczy P, Thomas BJ, DiNardo S (1994) roughex is a dose-dependent regulator of the second meiotic division during Drosophila spermatogenesis. Cell 77:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP (1991) Spermatogenesis in Drosophila. A genetic approach to cellular and subcellular differentiation. Eur J Cell Biol 56:151–169

    PubMed  CAS  Google Scholar 

  • Hales KG, Fuller MT (1997) Developmentally regulated mitochondrial fusion mediated by a conserved novel predicted GTPase. Cell 90:121–129

    Article  PubMed  CAS  Google Scholar 

  • Hardy RW, Tokuyasu KT, Lindsley DL, Garavito M (1979) The germinal proliferation center in the testis of Drosophila melanogaster. J Ultrastruct Res 69:180–190

    Article  PubMed  CAS  Google Scholar 

  • Hime GR, Brill JA, Fuller MT (1996) Assembly of ring canals in the male germ line from structural components of the contractile ring. J Cell Sci 109:2779–2788

    PubMed  CAS  Google Scholar 

  • Kemphues KJ, Raff RA, Kaufman TC, Raff EC (1979) Mutation in a structural gene for a ß-tubulin specific to testis in Drosophila melanogaster. Proc Natl Acad Sci USA 76:3991–3995

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R, Schafer U, Schafer M (1988) Cis-acting regions sufficient for spermatocyte-specific transcriptional and spermatid-specific translational control of the Drosophila melanogaster gene mst(3)gl-9. EMBO J 7:447–454

    PubMed  CAS  Google Scholar 

  • Kuhn R, Kuhn C, Borsch D, Glatzer KH, Schafer U, Schafer M (1991) A cluster of four genes selectively expressed in the male germ line of Drosophila melanogaster. Mech Dev 35:143–151

    Article  PubMed  CAS  Google Scholar 

  • Lin T Y, Viswanathan S, Wood C, Wilson PG, Wolf N, Fuller MT (1996) Coordinate developmental control of the meiotic cell cycle and spermatid differentiation in Drosophila males. Development 122:1331–1341

    PubMed  CAS  Google Scholar 

  • Lindsley D, Tokuyasu KT (1980) Spermatogenesis. In: Ashburner M, Wright TRF (eds) Genetics and biology of Drosophila, vol 2d. Academic Press, New York, pp 225–294

    Google Scholar 

  • Meyer JM, Maetz JL, Rumpler Y (1992) Cellular relationship impairment in maturation arrest of human spermatogenesis: an ultrastructural study. Histopathology 21:25–33

    Article  PubMed  CAS  Google Scholar 

  • Monesi V (1964) Ribonucleic acid synthesis during mitosis and meiosis in the mouse testis. J Cell Biol 22:521–532

    Article  PubMed  CAS  Google Scholar 

  • Olivieri G, Olivieri A (1965) Autoradiographic study of nucleic acid synthesis during spermatogenesis in Drosophila melanogaster. Mutat Res 2:366–380

    Article  PubMed  CAS  Google Scholar 

  • Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Cooke HJ (1997) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389:73–77

    Article  PubMed  CAS  Google Scholar 

  • Santel A, Winhauer T, Blümer N, Renkawitz-Pohl R (1997) The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterised by an unusual domain for repetitive amino acid motif. Mech Dev 64:19–30

    Article  PubMed  CAS  Google Scholar 

  • Schafer M, Borsch D, Hulster A, Schafer U (1993) Expression of a gene duplication encoding conserved sperm tail proteins is translationally regulated in Drosophila melanogaster. Mol Cell Biol 13:1708–1718

    PubMed  CAS  Google Scholar 

  • Schafer M, Nayernia K, Engel W, Schafer U (1995) Translational control in spermatogenesis. Dev Biol 172:344–352

    Article  PubMed  CAS  Google Scholar 

  • Schulz RA, Miksch JL, Xie XL, Cornish JA, Galewsky S (1990) Expression of the Drosophila gonadal gene: alternative promoters control the germ-line expression of monocistronic and bicistronic gene transcripts. Development 108:613–622

    PubMed  CAS  Google Scholar 

  • Sigrist S, Ried G, Lehner CF (1995) Dmcdc2 kinase is required for both meiotic divisions during Drosophila spermatogenesis and is activated by the Twine/cdc25 phosphatase. Mech Dev 53:247–260

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom K-O, Suominen M (1980) Histopathology and ultrastructure of meiotic arrest in human spermatogenesis. Arch Pathol Lab Med 104:476–482

    PubMed  CAS  Google Scholar 

  • Tates AD (1971) Cytodifferentiation during spermatogenesis in Drosophila melanogaster: an electron microscope study. Rijksuniversiteit, Leiden

    Google Scholar 

  • Tokuyasu KT (1974) Dynamics of spermiogenesis in Drosophila melanogaster. IV. Nuclear transformation. J Ultrastruct Res 48:284–303

    Article  PubMed  CAS  Google Scholar 

  • Tokuyasu KT (1975) Dynamics of spermiogenesis in Drosophila melanogaster. VI. Significance of “onion” nebenkern formation. J Ultrastruct Res 53:93–112

    Article  PubMed  CAS  Google Scholar 

  • White-Cooper H, Alphey L, Glover DM (1993) The cdc25 homologue twine is required for only some aspects of the entry into meiosis in Drosophila. J Cell Sci 106:1035–1044

    PubMed  CAS  Google Scholar 

  • White-Cooper H, Schafer MA, Alphey LS, Fuller MT (1998) Transcriptional and post-transcriptional control mechanisms coordinate the onset of spermatid differentiation with meiosis I in Drosophila. Development 125:125–134

    PubMed  CAS  Google Scholar 

  • Wong TW, Straus FH, Warner NE (1973) Testicular biopsy in the study of male infertility. Arch Pathol 95:151–159

    PubMed  CAS  Google Scholar 

  • Yang J, Porter L, Rawls J (1995) Expression of the dihydroorotate dehydrogenase gene, dhod, during spermatogenesis in Drosophila melanogaster. Mol Gen Genet 246:334–341

    Article  PubMed  CAS  Google Scholar 

  • Yanicostas C, Lepesant JA (1990) Transcriptional and translational cis-regulatory sequences of the spermatocyte-specific Drosophila janusB gene are located in the 3’ exonic region of the overlapping janusA gene. Mol Gen Genet 224:450–458

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

M. Stefanini C. Boitani M. Galdieri R. Geremia F. Palombi

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fuller, M.T., White-Cooper, H. (1998). Genetic Control of Meiosis and the Onset of Spermiogenesis in Drosophila. In: Stefanini, M., Boitani, C., Galdieri, M., Geremia, R., Palombi, F. (eds) Testicular Function: From Gene Expression to Genetic Manipulation. Ernst Schering Research Foundation Workshop, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03671-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03671-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03673-0

  • Online ISBN: 978-3-662-03671-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics