Space Physics pp 119-142 | Cite as

Shock Waves

  • May-Britt Kallenrode
Part of the Advanced Texts in Physics book series (ADTP)


A shock is a discontinuity separating two different regimes in an otherwise continuous medium. It is associated with something moving faster than the signal speed in the medium: a shock front separates the Mach cone of a supersonic jet from the ambient, undisturbed air. If a duck is paddling faster through a pond than a water wave can propagate, a shock separates the wake from the undisturbed water. In both cases the disturbance and with it the shock is moving, and thus the shock is called a traveling shock. Standing shocks also form: in a river, a shock forms in front of the bridge pier where the fast stream suddenly is slowed down. In space plasmas, both kinds of shocks exist: mass ejections propagating from the Sun through interplanetary space drive traveling shocks. The supersonic solar wind is slowed down at planetary magnetospheres, forming the bow shock, a standing shock wave. At these discontinuities the properties of the medium change dramatically. Combined with different wave modes in plasmas and the collisionless nature of the rarefied space plasmas, different types of shocks can develop. Shocks also play an important role in the acceleration of energetic particles. Shock waves in supernovae accelerate the galactic cosmic radiation, planetary bow shocks accelerate particles, as do shocks in front of coronal mass ejections.


Shock Front Energetic Particle Interplanetary Shock Shock Speed Collisionless Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    Armstrong, T.P., M.E. Pesses, and R. B. Decker (1985): Shock drift acceleration, in [7.44], p. 271Google Scholar
  2. 7.2
    Axford, W.I. (1982): Acceleration of cosmic rays by shock waves, in Plasma Astrophysics (eds. T.D. Tiyenen and T. Levy ), ESA-SP 151Google Scholar
  3. 7.3
    Axford, W.I., E. Leer, and G. Skadron (1977): The acceleration of cosmic rays by shock waves, Proc. 15th Int. Cosmic Ray Conf. 11, 132Google Scholar
  4. 7.4
    Bell, A.R.I. (1978): The acceleraton of cosmic rays in shock fronts, Mont. Not. R. Astron. Soc. 182, 147ADSGoogle Scholar
  5. 7.5
    Blandford, R.D., and J.P. Ostriker (1978): Particle acceleration by astrophysical shocks, Astrophys. J. Lett. 221, L29ADSCrossRefGoogle Scholar
  6. 7.6
    Boyd, T.J.M. and J.J. Sanderson (1969): Plasma dynamics, Barnes and Noble, New YorkMATHGoogle Scholar
  7. 7.7
    Burgess, D. (1995): Collisionless shocks, in Introduction to space physics (eds. M.G. Kivelson and C.T. Russel ), Cambridge University Press, Cambridge, p. 129Google Scholar
  8. 7.8
    Chao, J.K. and Y.H. Chen (1985): On the distribution of 013„ for shocks in the solar wind, J. Geophys. Res. 90, 149ADSCrossRefGoogle Scholar
  9. 7.9
    Chao, J.K. and B. Goldstein (1972): Observations of slow shocks in interplanetary space, J. Geophys. Res. 75, 6394CrossRefGoogle Scholar
  10. 7.10
    Courant, R. and K.O. Friedrichs (1991): Supersonic flow and shock waves, Springer, Berlin, reprint of the second Interscience edition, 1948Google Scholar
  11. 7.11
    Decker, R.B. (1981): The modulation of low-energy proton distributions by propagating interplanetary shock waves: a numerical simulation, J. Geophys. Res. 86, 4537ADSCrossRefGoogle Scholar
  12. 7.12
    Decker, R.B. (1983): Formation of shock spike events at quasi-perpendicular shocks, J. Geophys. Res. 88, 9959ADSCrossRefGoogle Scholar
  13. 7.13
    Decker, R.B. (1988): Computer modelling of test particle acceleration at oblique shocks, Space Sci. Rev. 48, 195ADSCrossRefGoogle Scholar
  14. 7.14
    Decker, R.B. and L. Vlahos (1985): Shock drift acceleration in the presence of waves, J. Geophys. Res. 90, 47ADSCrossRefGoogle Scholar
  15. 7.15
    Decker, R.B. and L. Vlahos (1986): Modeling of ion acceleration through drift and diffusion at interplanetary shocks, J. Geophys. Res. 91, 13349ADSCrossRefGoogle Scholar
  16. 7.16
    Decker, R.B. and L. Vlahos (1986): Numerical studies of particle acceleration at turbulent oblique shocks with an application to prompt ion acceleration during solar flares, Astrophys. J. 306, 710ADSCrossRefGoogle Scholar
  17. 7.17
    de Hoffman, F. and E. Teller (1950): Magnetohydrodynamic shocks, Space Sci. Rev. 80, 692Google Scholar
  18. 7.18
    Dorman, L.I. and G.I. Freidman (1959): Problems of magnetohydrodynamics and plasma dynamics, Zinätne, RigaGoogle Scholar
  19. 7.19
    Drury, L.O.C. (1983): An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas, Rep. Frog. Phys. 46, 973ADSCrossRefGoogle Scholar
  20. 7.20
    Dryer, M., S.T. Wu, G. Gislason, S.F. Han, Z.K. Smith, D.F. Smart, and M.A. Shea (1984): Magnetohydrodynamic modeling of interplanetary disturbances between sun and earth, Astrophys. Space Sci 195, 187ADSCrossRefGoogle Scholar
  21. 7.21
    Forman, M.A. and G.M. Webb (1985): Acceleration of energetic particles, in [7.42], p. 91Google Scholar
  22. 7.22
    Hundhausen, A.J. (1972): Coronal expansion and the solar wind, Springer, BerlinCrossRefGoogle Scholar
  23. 7.23
    Hundhausen, A.J. (1985): Some macroscopic properties of shock waves in the heliosphere, in [7.42]Google Scholar
  24. 7.24
    Hundhausen, A.J., T.E. Holzer, and B.C. Low, 1987: Do slow shocks precede some coronal mass ejections?, J. Geophys. Res. 92, 1 1173Google Scholar
  25. 7.25
    Jones, F.C. and D.C. Ellison (1991): The plasma physics of shock acceleration, Space Sci. Rev. 58, 259ADSCrossRefGoogle Scholar
  26. 7.26
    Kennel, C.F., F.V. Coroniti, F.L. Scarf, W.A. Livesay, C.T. Russell, E.J. Smith, K.-P. Wenzel, and M. Scholer (1986): A test of Lee’s quasi-linear theory of ion acceleration by traveling interplanetary shocks, J. Geophys. Res. 91, 1 1917Google Scholar
  27. 7.27
    Lee, M.A. (1982): Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth’s bow shock, J. Geophys. Res. 87, 5063ADSCrossRefGoogle Scholar
  28. 7.28
    Lee, M.A. (1983): Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks, J. Geophys. Res. 88, 6109ADSCrossRefGoogle Scholar
  29. 7.29
    Lee, M.A. (1986): Acceleration of energetic particles at solar wind shocks, in The sun and the heliosphere in three dimensions (ed. R.G. Marsden ), Reidel, Dordrecht, p. 305CrossRefGoogle Scholar
  30. 7.30
    McKenzie, J.F. and H.J. Völk (1982): Non-linear theory of cosmic ray shocks including self-generated Alfvén waves, Astron. Astrophys. 116, 191Google Scholar
  31. 7.31
    Morfill, G. and M. Scholer (1977): Influence of interplanetary shocks on solar energetic particle events, Astrophys. Space Sci. 46, 73ADSCrossRefGoogle Scholar
  32. 7.32
    Pizzo, V.J. (1985): Interplanetary shocks on the large scale: a retrospective on the last decades theoretical efforts, in [7.44], p. 51Google Scholar
  33. 7.33
    Richter, A.K. (1991): Interplanetary slow shocks, in Physics of the inner heliosphere, vol. 2 (eds. E. Marsch and R. Schwenn ), Springer, Berlin, p. 235Google Scholar
  34. 7.34
    Russell, C.T., E.J. Smith, B.T. Tsurutani, J.T. Gosling, and S.J. Bame (1993): Multiple spacecraft observations of interplanetary shocks: characteristics of the upstream ULF turbulence, in Solar Wind Five, (ed. M. Neugebauer), NASA CP 2280, Washington, DC, p. 385Google Scholar
  35. 7.35
    Saagdev, R.Z. and C.F. Kennel (1991): Collisionless shock waves, Sci. Am., April 1991, 40Google Scholar
  36. 7.36
    Schatzmann, E., 1963: On the acceleration of particles in shock fronts, Ann. Astrophy. 26, 234ADSGoogle Scholar
  37. 7.37
    Scholer, M. (1985): Diffusive acceleration, in [7.44], p. 287Google Scholar
  38. 7.38
    Scholer, M. (1987): Observational overview of energetic particle populations associated with interplanetary shocks, in Solar Wind IV (eds. V. Pizzo, T.E. Holzer, and D.G. Sime), NCAR/TN306+Proc., Nat. Center of Atm. Res., Boulder, COGoogle Scholar
  39. 7.39
    Schwenn, R. (1983): Direct correlation between coronal transients and interplanetary disturbances, Space Sci. Rev. 34, 85ADSCrossRefGoogle Scholar
  40. 7.40
    Smith, Z.K. and M. Dryer (1990): MHD study of temporal and spatial evolution of simulated interplanetary shocks in the ecliptic plane within 1 AU, Solar Phys. 129, 387ADSCrossRefGoogle Scholar
  41. 7.41
    Steinolfson, R.S. and A.J. Hundhausen (1990): MHD intermediate shocks in a coronal mass ejection, J. Geophys. Res. 95, 6389ADSCrossRefGoogle Scholar
  42. 7.42
    Stone, R.G. and B.T. Tsurutani (eds.) (1985): Collisionless shocks in the heliosphere: a tutorial review, Geophys. Monogr. 34, American Geophysical Union, Washington, DCGoogle Scholar
  43. 7.43
    Toptygin, I.N. (1983): Cosmic rays in interplanetary magnetic fields, Reidel, DordrechtGoogle Scholar
  44. 7.44
    Tsurutani, B.T. and R.G. Stone (eds.) (1985): Collisionless shocks in the heliosphere: reviews of current research, Geophys. Monogr. 35, American Geophysical Union, Washington, DCGoogle Scholar
  45. 7.45
    Völk, H.J. (1987): Particle acceleration in astrophysical shock waves, Proc. 20th Internat. Cosmic Ray Conf. 7, 157Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • May-Britt Kallenrode
    • 1
  1. 1.FB IV — UmweltwissenschaftenUniversität LüneburgLüneburgGermany

Personalised recommendations