Forest soils under alternatives to slash-and-burn agriculture in Sumatra, Indonesia

  • Meine van Noordwijk
  • Daniel Murdiyarso
  • Kurniatun Hairiah
  • Upik Rosalina Wasrin
  • Achmad Rachman
  • Thomas P. Tomich
Conference paper

Abstract

A global project on ‘Alternatives to Slash and Burn’ agriculture was initiated by a consortium of international and national research institutes to facilitate intensification of the use of converted forest land, in order to help alleviate poverty and protect the remaining forest areas for their biodiversity values and their role in mitigating greenhouse gas emissions.

Data for the Indonesian benchmark areas in the lowland peneplain, piedmont and mountain zone of Sumatra are presented. A significant amount of forest land, especially in the lowland peneplain, has been converted in the last ten years into agricultural use, usually following logging concessions. Soils on the peneplain are poor (oxi- and ultisols) and current intensive crop based production systems are not sustainable. In the piedmont zone on better soils (inceptisols), rubber agroforests (still) characterize the area. Agroforests have emerged during the 20’th century as the major alternative to slash-and-burn agriculture, based on a shift of emphasis from food crops to cash-earning tree crops. Emphasis on food crops, however, continues in government resettlement schemes.

Differences in organic C content of the topsoil between forests and crop land are about 0.5% C, with agroforests and tree crop plantations in an intermediate position. A new size-density fractionation scheme for soil organic matter demonstrated larger changes in light and intermediate fractions. Forest soils can be significant sinks for methane and thus partly compensate for the methane emissions in lowland rice production.

Overall, the Sumatra benchmark areas demonstrate the need to combine intensification of land use at the field/household level with effective protection of remaining forest areas at the community level and reducing other driving forces of deforestation at the national level.

Keywords

Burning Clay Methane Rubber Income 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alegre, J. C. and Cassel, D. K., 1996. Dynamics of soil physical properties under alternatives to slash-and-burn. Agric. Ecosyst. and Environm. 58: 39–48Google Scholar
  2. Boserup, E., 1965. Conditions of Agricultural Growth. Aldine, Chicago, USA.Google Scholar
  3. Brady, N. C., 1996. Alternatives to slash-and-burn: a global imperative. Agric. Ecosyst. and Environm. 58: 3–11Google Scholar
  4. Danhof, G. N., 1941. Tweede bijdrage tot oplossing van het alang-alang vraagstuk in de Lampongse Districten. [Second contribution to solving the alang-alang problem in the Lampung Districts]. Tectona 34: 67–85.Google Scholar
  5. FAO/MacKinnon, J., 1982. National Conservation Plan for Indonesia, Vol. II. Sumatra. FAO, Bogor. (10. 2. 16 ).Google Scholar
  6. Gouyon, A., De Foresta, H. and Levang, P., 1993. Does `jungle rubber’ deserve its name? An analysis of rubber agroforestry systems in southeast Sumatra. Agroforestry Systems 22, 181–206.CrossRefGoogle Scholar
  7. Hagreis, B. J., 1930. Ladangbouw [Shifting cultivation]. Landbouw 6: 43–78.Google Scholar
  8. Hairiah, K.., G. Cadisch, M. van Noordwijk, A. R. Latief and G. Mahabharata, Syekhfani, 1995. Size-density and isotopic fractionation of soil organic matter after forest conversion. In: A. Schulte and D. Ruhiyat (eds.) Proc. Balikpapan Conf. on Forest Soils Vol. 2: 70–87Google Scholar
  9. Hardon, H. J., 1936. Factoren, die het organische stof-en het stikstofgehalte van tropische gronden beheerschen [Factors, controlling the organic matter and the nitrogen content of tropical soils]. Landbouw XI (12): 517–540.Google Scholar
  10. IPCC, 1990. Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge (UK )Google Scholar
  11. Izac, A. M. and C. A. Palm, 1994. Guidelines for characterization and diagnosis for the global project on alternatives to slash-and-burn. ICRAF, Nairobi.Google Scholar
  12. Juo, A. S. R. and Manu, A., 1996. Chemical dynamics in slash-and-burn agriculture. Agric. Ecosyst. and Environm. 58: 49–69Google Scholar
  13. Koens, A. J., 1925. Ladangbouw [Shifting cultivation]. Landbouw 1: 334–340.Google Scholar
  14. Laumonier, Y, 1997. The vegetation and Physiography of Sumatra. Kluwer, Dordrecht, the Netherlands, 215 pp.CrossRefGoogle Scholar
  15. Malingreau, J. P. and R. Christiani, 1981. A land cover/ land use classification for Indonesia. First revision. Indonesian J. of Geog. 11 (41): 13–47.Google Scholar
  16. Marsden, W. H. 1811. The History of Sumatra. Reprinted from 3rd edition, by Oxford University Press, Oxford.Google Scholar
  17. Meijboom, F. W, Hassink J. and Van Noordwijk, M., 1995. Density fractionation of soil macroorganic matter using silica suspensions. Soil Biol. B io chem. 27: 1109–1111.Google Scholar
  18. Murdiyarso, D. M., Hairiah, K. and Van Noordwijk, M. (Eds.) Modelling and Measuring Soil Organic Matter Dynamics and Greenhouse Gas Emissions after Forest Conversion. Proceedings of Workshop/ Training Course 8–15 August 1994, Bogor/Muara Tebo. ASB-Indonesia publication No. 1.Google Scholar
  19. Murdiyarso, D. and U. R. Wasrin, 1995. Estimating land use change and carbon release from tropical forest conversion using remote sensing techniques. Journal of Biogeography 22: 715–722.CrossRefGoogle Scholar
  20. Nugroho, S. G., Lumbanraja, J., Suprapto, H., Sunyoto, Ardjasa, W. S., Haraguchi, H. and Kimura, M., 1996. Three-year measurement of methane emission from an Indonesian paddy field. Plant and Soil 181: 287–293.Google Scholar
  21. Nye and Greenland, 1960 The Soil under Shifting Cultivation. Commonwealth Bureau of Soils Tech. Comm. 51, Harpenden, UK.Google Scholar
  22. Palm, C. A., Swift, M. J. and Woomer, P. L., 1996. Soil biological dynamics in slash-and-burn. Agric. Ecosyst. and Environm. 58: 61–74.Google Scholar
  23. Richards, J. F. and Flint, E. P., 1993. Historic land use and carbon estimates for South and Southeast Asia, 1880–1980. Carbondioxide information analysis center, Oak Ridge National Laboratory, Environmental Sciences Division Publication No. 4174. 326 pp.Google Scholar
  24. Sanchez, P. A., Palm, C. A. and Smyth, T. J., 1990. Approaches to mitigate tropical deforestation by sustainable soil management practices. In: Scharpenseel, H. W., Schomaker, M. and Ayoub A. (eds.) Soils on a Warmer Earth. Elsevier, Amsterdam, p. 211–220.Google Scholar
  25. Scholz U., 1983. The natural regions of Sumatra and their agricultural production pattern. A regional analysis. Central Research Institute for Food Crops ( CRIFC ). Bogor.Google Scholar
  26. Tinker, P. B., Ingram, J. S. I., and Struwe, S., 1996, Effects of slash-andburn agriculture and deforestation on climate change. Agric. Ecosyst. and Environm. 58: 13–22.Google Scholar
  27. Tomich, T. P. and M. van Noordwijk, 1996. What drives deforestation in Sumatra? in: B. Rerkasem (ed.) Montane Mainland Southeast Asia in Transition, Chiang Mai University, Thailand, pp 120–149.Google Scholar
  28. Torquebiau, E., 1984. Man-made Dipterocarp forest in Sumatra. Agroforestry Systems 2 (2): 103–128.Google Scholar
  29. Van Noordwijk, M., T. P. Tomich, R. Winahyu, D. Murdiyarso, S. Partoharjono and A. M. Fagi (editors) 1995. Alternatives to Slash-and Burn in Indonesia, Summary Report of Phase 1. ASB-Indonesia Report Number 4, Bogor, IndonesiaGoogle Scholar
  30. Van Noordwijk, M., Cerri, C., Woomer, P. L., Nugroho, K. and Bernoux, M.,1997 Soil carbon dynamics in the humid tropical forest zone. Geo-derma (in press)Google Scholar
  31. Van Steenis, C. G. G. J., 1935. Maleische vegetatieschetsen [Sketches of Malaysian vergetation]. Tijd. Kon. Ned. Aard. Gen. 52: 25–67, 171–203, 363–390.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Meine van Noordwijk
    • 1
  • Daniel Murdiyarso
    • 2
  • Kurniatun Hairiah
    • 3
  • Upik Rosalina Wasrin
    • 4
  • Achmad Rachman
    • 5
  • Thomas P. Tomich
    • 1
  1. 1.ICRAF-S.E. AsiaBogorIndonesia
  2. 2.Bogor Agricultural UniversityBogorIndonesia
  3. 3.Brawijaya UniversityMalangIndonesia
  4. 4.SEAMEO-BIOTROPBogorIndonesia
  5. 5.Center for Soil and Climate ResearchBogorIndonesia

Personalised recommendations