Modern Experimental Methods and Results

  • Bo N. J. Persson
Part of the NanoScience and Technology book series (NANO)

Abstract

Practically all sliding friction devices have an interface where the friction force is generated, a finite sliding mass M, and some elastic properties usually represented by a spring k s as in Fig. 3.1. The spring does not need to be an external spring but could represent the overall elastic properties of the sliding device. In most sliding friction experiments the free end of the spring moves with a constant velocity υs, but sometimes it varies with time. The force in the spring as a function of time is the basic quantity registered in most of these experiments. It is important to note that, due to inertia, during acceleration the spring force is not equal to the friction force acting on the block.

Keywords

Quartz Silicate Benzene Hydrocarbon Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    J.N. Israelachvili: Surf. Sci. Rpt. 14, 109 (1992)Google Scholar
  2. 3.2
    H. Yoshizawa, J. Israelachvili: J. Phys. Chem. 97, 11300 (1993)Google Scholar
  3. 3.3
    H. Yoshizawa, Y.-L. Chen, J. Israelachvili: Wear 168, 161 (1993)Google Scholar
  4. 3.4
    H. Yoshizawa, Y.-L. Chen, J. Israelachvili: J. Phys. Chem. 97, 4128 (1993)Google Scholar
  5. 3.
    B.N.J. Persson: Phys. Rev. B51 13568(1995)Google Scholar
  6. 3.6
    A.D. Berman, W.A. Ducker, J.N. Israelachvili: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti ( Kluwer, Dordrecht 1996 )Google Scholar
  7. 3.7
    R. Erlandsson, G. Hadziioannou, C. M. Mate, G.M. McClelland, S. Chiang: J. Chem. Phys. 89, 5190 (1988)Google Scholar
  8. C. Mathew, G.M. McClelland, R. Erlandsson, S. Chiang: Phys. Rev. Lett. 59, 1942 (1987)Google Scholar
  9. 3.8
    E. Rabinowicz, D. Tabor: Proc. Roy. Soc. (London) A 208, 455 (1951)Google Scholar
  10. 3.9
    J. Krim, A. Widom: Phys. Rev. B 38, 12184 (1988)Google Scholar
  11. 3.10
    J. Krim, D.H. Solina, R. Chiarello: Phys. Rev. Lett. 66, 181 (1991)Google Scholar
  12. 3.11
    J. Krim: Scientific Am. 275, 48 (October 1996)Google Scholar
  13. 3.12
    J. Krim, C. Daly: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti ( Kluwer, Dordrecht 1996 )Google Scholar
  14. C. Daly, J. Krim: Phys. Rev. Lett. 76, 803 (1996)Google Scholar
  15. 3.13
    J. Krim, D.H. Solina, R. Chiarello: Phys. Rev. Lett. 66, 181 (1991)Google Scholar
  16. 3.14
    J.Krim, E.T. Watts, J. Digel: J. Vac. Sci. Technol. A 8, 3417 (1990)Google Scholar
  17. 3.
    E.T. Watts, J. Krim, A. Widom: Phys. Rev. B41 3466(1990)Google Scholar
  18. 3.16
    J. Krim, R. Chiarello: J. Vac. Sci. Technol. A 9, 2566 (1991)Google Scholar
  19. 3.17
    E. Meyer, R. Lüthi, L. Howald, M. Bammerlin, M. Guggisberg, H.-J. Güntherodt, L. Scandella, J. Gobrecht: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti ( Kluwer, Dordrecht 1996 )Google Scholar
  20. 3.18
    U.D. Schwarz, H. Bluhm, H. Hölscher, W. Allers, R. Wiesendanger: In Physics of Sliding Friction, ed. by B.N.J. Persson, E. Tosatti ( Kluwer, Dordrecht 1996 )Google Scholar
  21. 3.19
    U.D. Schwarz, R. Wiesendanger: Priv. Commun. (1996)Google Scholar
  22. 3.20
    M. Rosso, D. Schumacher: Priv. commun. (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Bo N. J. Persson
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations