Skip to main content

The Nucleus as a Laboratory for Studying Fundamental Processes

  • Chapter
From Nucleons to the Atomic Nucleus
  • 215 Accesses

Abstract

Because of its structure of protons and neutrons which, in the bound nucleus, are sensitive to the strong, weak, and electromagnetic interactions, the atomic nucleus can serve as a very specific “laboratory” for testing how these basic interactions behave together. It should be possible to probe physics at the intersections of nuclear physics with fields as varied as particle physics (tests of particle properties, tests of the standard model, …), atomic physics, quantum physics and astrophysics (see Fig. 6.1) . The very important issue of nuclear astrophysics will be discussed in much more detail in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. We begin by referring to the references of Chap. 1 which include a number of books concentrating on general nuclear physics. There, beta decay is presented in some detail. Because beta decay is a particularly important issue a number of books completely devoted to this topic, for example, are given: Holstein, B. (1989) Weak Interactions (Princeton University Press, Princeton, N. J .)

    Google Scholar 

  2. Strachan, C. (1969) The Theory of Beta Decay (Pergamon, New York)

    Google Scholar 

  3. Wu, C.S., Moszkowski, S.A. (1966) Beta Decay (Wiley, New York)

    Google Scholar 

  4. Here, we are particularly interested in the end-point of the energy spectrum giving information about a possible non-vanishing neutrino mass. This is discussed in detail by Holzschuh, E. (1992) Rep. Prog. Phys. 55, 1035

    Article  ADS  Google Scholar 

  5. Holzschuh, E., Fritschi, M., Kündig, W. (1992) Phys. Lett. B287, 381

    Google Scholar 

  6. The issue of double beta decay is most important. Geochemical evidence has existed for quite some time but the detailed observation of double beta decay under controlled laboratory conditions is quite recent. We first give a popular text, then some review papers, and a result from recent experiments. Moe, M.K., Rosen, S.P. (1989) Scientific American, November, p. 30

    Google Scholar 

  7. Haxton. W.C. (1983) Comments Nucl. Part. Phvs. 11, 41

    Google Scholar 

  8. Doi, M., Kotani, T., Takasugi, E. (1985) Prog. Theor. Phys. Suppl. 83, 1

    Article  ADS  Google Scholar 

  9. Avignone III, F.T., Brodzinski, R.L. (1988) Prog. Part. Nucl. Phys. 21, 99

    Article  ADS  Google Scholar 

  10. Haxton, W.C., Stephenson Jr., G.J. (1984) Prog. Part. Nucl. Phys. 12, 409

    Article  ADS  Google Scholar 

  11. Tomoda, T. (1991) Rep. Progr. Phys. 54, 53

    Article  ADS  Google Scholar 

  12. Beck, M. et al. (1993) Phys. Rev. Lett. 70, 2853

    Article  ADS  Google Scholar 

  13. Neutrino physics has become a very extended domain in physics with topics including neutrino mass, neutrino oscillations, solar neutrino production and detection, etc. We cannot give here a detailed account of the many directions of research but we first refer to some books containing extensive reference lists, to a number of popular accounts, and to some recent review papers and a number of the most basic articles that appeared in the scientific literature. Boehm, F., Vogel, P. (1992) Physics of Massive Neutrinos, 2nd ed. (Cambridge University Press, Cambridge)

    Book  Google Scholar 

  14. Bahcall, J.N. (1989) Neutrino Astrophysics (Cambridge University Press, Cambridge)

    Google Scholar 

  15. Winter, K. (ed.) (1991) Neutrino Physics (Cambridge University Press, Cambridge)

    Google Scholar 

  16. Bahcall, J.N., Davis Jr., R., Wolfenstein, L. (1988) Nature, August 334, p. 487

    Article  ADS  Google Scholar 

  17. Bahcall, J.N. (1994) Beam Line , A Periodical of Particle Physics, Stanford Linear Accelerator Center, Fall, 10

    Google Scholar 

  18. CERN Courier (1995) June, 13

    Google Scholar 

  19. Elliott, S.R., Robertson, R.G.H. (1991) Contem. Phys. 32, No. 4, 251

    Article  ADS  Google Scholar 

  20. Haxton, W.C. (1986) Comments Nucl. Part. Phys. 16, 95

    Google Scholar 

  21. Lemonick, M.D. (1996) Time, April 8, p. 46

    Google Scholar 

  22. Schwarzchild, B. (1986) Physics Today, June, p. 17

    Google Scholar 

  23. Van Klinken, J. (1995) Ned. Tijdschr. Nat. 11, 199 (In Dutch)

    Google Scholar 

  24. Langanke, K., Barnes, L.A. (1996) Adv. Nucl. Phys. 22, 173

    Article  Google Scholar 

  25. Oberauer, L., Feilitsch von, F. (1992) Rep. Prog. Phys. 55, 1093

    Article  ADS  Google Scholar 

  26. Athanassopoulos, C. et al. (1995) Phys. Rev. Lett. 75, 2650

    Article  ADS  Google Scholar 

  27. Bethe, H.A. (1986) Phys. Rev. Lett. 56, 1305

    Article  ADS  Google Scholar 

  28. Bethe, H.A. (1989) Phys. Rev. Lett. 63, 837

    Article  ADS  Google Scholar 

  29. Hampel, W. et al. (1996) Phys. Lett. B388, 384 — Most recent GALLEX analyses

    Google Scholar 

  30. Hill, J.E. (1995) Phvs. Rev. Lett. 75, 2654

    Article  ADS  Google Scholar 

  31. Mikheyev, S.P., Smirnov, A. (1988) Phys. Lett. B200, 560

    Google Scholar 

  32. Wolfenstein, L. (1979) Phys. Rev. D20, 2634

    Article  ADS  Google Scholar 

  33. We also mention a couple of review papers that concentrate more on observational aspects of neutrino astrophysics, neutrino—nucleus interactions, and theory of supernovae, thereby putting neutrino processes in the context of astrophysics and astronomy. Brown, G.E. (ed.) (1988) Phys. Rep. 163, 1–204

    Google Scholar 

  34. Koshiba, M. (1992) Phys. Rep. 220, 229

    Article  ADS  Google Scholar 

  35. Kubodera, K., Nozawa, S. (1994) Int. J. Mod. Phys. E3, 101

    ADS  Google Scholar 

  36. The implications of free neutron decay for our basic understanding of the standard model are discussed in a recent book presenting neutron properties at length with many references Byrne, J. (1994) Neutrons, Nuclei and Matter (Institute of Physics, Bristol)

    Google Scholar 

  37. We also mention a recent popular account of the many facets of the neutron and its decay, as well as two articles about experiments that have set error bars as small as possible: Gribbin, J. (1993) New Scientist, March, p. 41

    Google Scholar 

  38. Byrne, J. et al. (1990) Phys. Rev. Lett. 65, 289

    Article  ADS  Google Scholar 

  39. Stolzenberg, H. et al. (1990) Phys. Rev. Lett. 65, 3104

    Article  ADS  Google Scholar 

  40. The subject of testing fundamental symmetries [parity invariance (P), time reversal (T) , charge conjugation combined with parity (CP), ...] spans a large field of physics, too. We refer to a number of books in order to accommodate the major part of the older literature on this vast subject: Roberson, N.R., Gould, C.R., Bowman, C.D. (eds.) (1988) Tests of Time Reversal Invariance (World Scientific, Teaneck, NJ)

    Google Scholar 

  41. Sachs, R.G. (1987) The Physics of Time Reversal Invariance (Chicago University Press, Chicago)

    Google Scholar 

  42. A number of review papers concentrating on more recent efforts to test the above symmetries are: Adelberger, E.G., Haxton, W.C. (1985) Ann. Rev. Nucl. Sci. 35, 501

    Article  ADS  Google Scholar 

  43. Henley, E.M. (1969) Ann. Rev. Nucl. Sci. 19, 367

    Article  ADS  Google Scholar 

  44. Henley, E.M. (1987) Prog. Part. Nucl. Phys. 20, 387

    Article  ADS  Google Scholar 

  45. Van Klinken, J. (1996) J. Phys. G 22, 1239

    Article  ADS  Google Scholar 

  46. Wolfenstein, L. (1986) Ann. Rev. Nucl. Part. Sci. 36, 187

    Google Scholar 

  47. Some interesting, more technical articles are given too: Alfimenkov, V.P. et al. (1982) JETP Lett. 35, 51

    ADS  Google Scholar 

  48. Hayes, A.C. (1996) TTASCC-P-96–2 Preprint

    Google Scholar 

  49. Müller, A., Harney, H.L. (1992) Phys. Rev. C45, 1955

    Google Scholar 

  50. Severijns, N. et al. (1993) Phys. Rev. Lett. 70, 4047

    Article  ADS  Google Scholar 

  51. Weidenmüller, H.A. (1991) Nucl. Phys. A522, 293c

    Article  Google Scholar 

  52. Finally we give a few more popular accounts: Boehm, F. (1983) Comments Nucl. Part. Phys. 11, 251

    Google Scholar 

  53. Rosner, J.L. (1987) Comments Nucl. Part. Phys. 17, 93

    Google Scholar 

  54. 6.54 Wolfenstein, L. (1985) Comments Nucl. Part. Phys. 14, 135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heyde, K. (1998). The Nucleus as a Laboratory for Studying Fundamental Processes. In: From Nucleons to the Atomic Nucleus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03633-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03633-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08318-1

  • Online ISBN: 978-3-662-03633-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics