Future Development of the Carbon Cycle: the Role of the Biota/Forests within the IPCC Stabilization Scenarios

  • G. H. Kohlmaier
  • Ch. Häger
  • F. Ift
  • G. Würth
  • F. Joos
  • M. Bruno
Chapter

Abstract

For the analyzed period between 1980 and 1989 a terrestrial biospheric sink of the order of 1.7 to 1.8 Gt C per year is required to close the CO2 budget between atmospheric CO2 input, observed atmospheric CO2 increase, CO2 ocean uptake and CO2 release from deforestation. The reasons for the additional terrestrial sink are still not completely clarified, however, the fertilization through additional atmospheric CO2 and deposition of nitrogen compounds are believed to be of importance in addition to factors associated with climate change, age class distribution of forests as well as land management practices. The IPCC (Intergovernmental Panel on Climate Change) has generated a series of atmospheric CO2 profiles leading to stabilization levels in the range 350 to 1000 ppmV. These profiles correspond to developments with very strong efforts, intermediate efforts, or nearly absent (at least during the next 30 to 50 years) efforts to stabilize greenhouse gases. In the present study, we examine the CO2 exchange between the land biota and the atmosphere studying in particular the long term development of a potential CO2 related fertilization effect for the profiles stabilizing atmospheric CO2 at 450 (S450), 650 (S650) and 1000 (S1000) ppmV. Two different biosphere box models, an ultra-simple two-box model (USBM) and the Bern four-box biosphere model as well as the high-resolution Frankfurt Biosphere Model (FBM) were investigated to study the long-term response (up to the year 2300) of the biota and soils.

We applied a linear pulse response function substitute model of the HILDA ocean model to calculate the oceanic CO2 uptake. Similar to the ocean behaviour the uptake of carbon by the biosphere follows the sigmoidal increase function of atmospheric CO2, both with the USBM, the Bern Biosphere Model as well as with the more detailed Frankfurt Biosphere Model. Biospheric carbon uptake is highest near the inflection point of the annual CO2 emissions into the atmosphere and then falls off at times beyond. We summarize in stating that a potential CO2 fertilization effect with respect to a biospheric carbon increase drops off during the first half of next century for the profiles S450 and S650 and somewhat later for the the S1000 scenario.

Keywords

Biomass Combustion Starch Dioxide Respiration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazzaz F.A. (1990): The response of natural ecosystems to the rising global CO2 levels, Annual Review of Ecological Systems, 21: 167–196.CrossRefGoogle Scholar
  2. Bruno M., Joos F. (1996): Terrestrial carbon storge during the past 200 years: A Monte Carlo analysis of CO2 data from ice core and atmospheric measurements. Global. Biogeochem Cycles, 11(1): 111–124.CrossRefGoogle Scholar
  3. Fung I.Y., Tucker C.J., Prentice K.C. (1987): Application of Advanced Very High Resolution Radiometer Vegetation Index to Study Atmosphere-Biosphere Exchange of CO2. J. Geophys. Res. 92(D3): 2999–3015.CrossRefGoogle Scholar
  4. Häger C., Würth G., Wagner U., Kohlmaier G.H. (1996): Responses in the growth of the northern forests to a CO2-induced climatic change, as evaluated by the Frankfurt Biosphere Model (FBM). World Resource Review 8: 178–197.Google Scholar
  5. Houghton J.T., Meira Filho L.G., Callander B.A. (1996): Climate Change 1995. The Science of Climate Change, IPCC, Cambridge University Press, Cambridge, 572 pp.Google Scholar
  6. Ift F. (1996): Untersuchung globaler CO 2 -Stabilisierungsszenarien im Rahmen eines vereinfachten gekoppelten Atmosphäre-Biosphäre-Ozean-Modells. Diplomarbeit Universität Frankfurt.Google Scholar
  7. Joos F., Bruno M., Fink R., Siegenthaler U., Stocker T.F., Le Quéré C., Sarmiento J.L. (1995): An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48B: 397–417.Google Scholar
  8. Kirschbaum M.U.F., Farquhar G.D. (1987): Investigation of the CO2 Dependence of Quantum Yield and Respiration in Eucalyptus pauciflora. Plant Physiol. 83: 1032–1036.CrossRefGoogle Scholar
  9. Körner C., Arnone III J.A. (1992): Responses to elevated carbon dioxide in artificial tropical ecosystems, Science, 257: 1672–1675.CrossRefGoogle Scholar
  10. Kohlmaier G.H., Bröhl H., Siré E.O., Plöchl M., Revelle R. (1987): Modelling Stimulation of Plants and Ecosystem Response to Present Levels of Excess Atmospheric CO2. Tellus 39B: 155–170.CrossRefGoogle Scholar
  11. Kohlmaier G.H., Badeck F.-W., Otto R.D., Häger C., Dönges S., Kindermann J., Würth G., Lang T., Jäkel U., Nadler A., Klaudius A., Ramge P., Habermehl S., Lüdeke M.K.B. (1997): The Frankfurt Biosphere Model: A Global Process Oriented Model for the Seasonal and Longterm CO2 Exchange between Terrestrial Ecosystems and the Atmosphere. Part 2: Global results for potential vegetation in an assumed equilibrium Climate Research, 8: 61–87.CrossRefGoogle Scholar
  12. Long S.P., Drake B.G. (1992): Photosynthetic CO2 Assimilation and Rising Atmospheric CO2 Concentrations. In: Crop Photosynthesis: Spatial and Temporal Determinants (N.R. Baker, H. Thomas, eds.), Elsevier.Google Scholar
  13. Lüdeke M.K.B., Badeck F.-W., Otto R.D., Häger C., Dönges S., Kindermann J., Würth G., Lang T., Jäkel U., Klaudius A., Ramge P., Habermehl S., Kohlmaier G.H. (1994): The Frankfurt Biosphere Model. A Global Process Oriented Model for the Seasonal and Longterm CO2 Exchange between Terrestrial Ecosystems and the Atmosphere. Part 1 : Model Description and Illustrating Results for the Vegetation Types Cold Deciduous and Boreal Forests. Climate Research 4:143–166.CrossRefGoogle Scholar
  14. Lüdeke M.K.B., Dönges S., Otto R.D., Kindermann J., Badeck F.-W., Ramge P., Jäkel U., Kohlmaier G.H. (1995): Responses in NPP and Carbon Stores of the Northern Biomes to a CO2-induced Climatic Change, as Evaluated by the Frankfurt Biosphere Model (FBM). Tellus 47B: 191–205.Google Scholar
  15. Matthews E. (1983): Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies. J. Clim. Appl. Meteor. 22: 474–487.CrossRefGoogle Scholar
  16. Matthews E. (1984): Global Inventory of Pre-agricultural and Present Biomass. Progress in Biometeorology 3: 237–246.Google Scholar
  17. Monsi M., Saeki T. (1953): über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap. Journ. Bot. 14: 22–52.Google Scholar
  18. Schimel D. (1995): Terrestrial ecosystems and the global carbon cycle. Global Change Biology, 1:77–91.CrossRefGoogle Scholar
  19. Thornley J.H.M. (1970): Respiration, growth and maintenance in plants. Nature221: 304–305.CrossRefGoogle Scholar
  20. Thornthwaite C.W. (1948): An Approach toward a Rational Classification of Climate. Geographical Review 38: 55–94.CrossRefGoogle Scholar
  21. Wagner A.U. (1995): Differenzierung der Wachstums- und Erhaltungsrespiration im An- schluß an die Photosyntheseprozesse von Pflanzen als Modellbaustein für das Frankfurter Biosphärenmodell. Diplomarbeit Universität FrankfurtGoogle Scholar
  22. Wigley T.M.L., Richards R., Edmonds J.A. (1995): Stabilizing CO2 concentrations: The choice of emissions pathway. Nature 379, 240–243.CrossRefGoogle Scholar
  23. Würth G., Häger C., Kohlmaier G.H. (1997): The Frankfurt Biosphere Model (FBM): Regional Validation using German Forest Yield Tables and Inventory Data and Extrapolation to 2×CO2 Climate. This volumeGoogle Scholar
  24. Xu D.-Q., Gifford R.M., Chow W.S. (1994): Photosynthetic Acclimation in Pea and Soybean to High Atmospheric CO2 Partial Pressure. Plant Physiology 106: 661–671.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • G. H. Kohlmaier
    • 1
  • Ch. Häger
    • 1
  • F. Ift
    • 1
  • G. Würth
    • 1
  • F. Joos
    • 2
  • M. Bruno
    • 2
  1. 1.Institute for Physical and Theoretical ChemistryUniversity of FrankfurtGermany
  2. 2.Institute of PhysicsUniversity of BernSwitzerland

Personalised recommendations