Advertisement

Spectroscopy with Electrons

  • Hans Kuzmany

Abstract

Spectroscopy as discussed so far has been for electromagnetic radiation interacting with solids. According to the last chapter a beam of charged particles will also interact with the electronic system of the solid and will thus be subjected to an energy loss. This means energy transfer between the beam and the systems will take place and similar absorption and scattering spectra can be expected as described for the Raman effect and for optical absorption. In fact, spectroscopy with electrons extends the possible range of excitations dramatically. The much larger momentum of the electrons as compared to photons for the same energy enables not only the energy of the excitations but also their momentum to be measured. In addition, transport measurements for electrons or holes across junctions between two materials are an excellent method to obtain information on electron and even phonon densities of states. The two most important experimental techniques in this field are electron energy loss spectroscopy (EELS) and tunneling spectroscopy.

Keywords

Fermi Energy Tunneling Junction Schottky Diode Electron Energy Loss Spectroscopy Tunneling Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 15.1.
    J. Fink: Advances in Electronics and Electron Physics 79, 155 (1989)Google Scholar
  2. 15.2.
    C.J. Powell, J.B. Swan: Phys. Rev. 116, 81 (1959)ADSCrossRefGoogle Scholar
  3. 15.3.
    C. Wehenkel: J. Phys. (Paris) 36, 199 (1975)CrossRefGoogle Scholar
  4. 15.4.
    L.R. Canfield, G. Hass, W.R. Hunter: J. Phys. (Paris) 25, 124 (1996)Google Scholar
  5. 15.5.
    W.A. Harrison: Phys. Rev. 123, 85 (1961)ADSCrossRefGoogle Scholar
  6. 15.6.
    L. Esaki, Y. Miyahara: Solid State Electron. 1, 13 (1960)ADSCrossRefGoogle Scholar
  7. 15.7.
    J.W. Conley, C.B. Duke, G.D. Mahan, J.J. Tiemann: Phys. Rev. 150, 466 (1966)ADSCrossRefGoogle Scholar
  8. 15.8.
    F. Steinrisser, L.C. Davis, C.B. Duke: Phys. Rev. 176, 912 (1968)ADSCrossRefGoogle Scholar
  9. 15.9.
    I. Giaever: Phys. Rev. Lett. 5, 147 (1960)ADSCrossRefGoogle Scholar
  10. 15.10.
    J. Nicol, S. Shpiro, P.H. Smith: Phys. Rev. Lett. 5, 461 (1960)ADSCrossRefGoogle Scholar
  11. 15.11.
    B.L. Blackford, R.H. March: Can. J. Phys. 46, 141 (1968)ADSCrossRefGoogle Scholar
  12. 15.12.
    J.K. Tsang, D.M. Ginsberg: Phys. Rev. B22, 4280 (1980)ADSGoogle Scholar
  13. 15.13.
    W.L. McMillan, J.L. Rowell: Phys. Rev. Lett. 14, 108 (1965)ADSCrossRefGoogle Scholar
  14. 15.14.
    I. Giaever, H.R. Hart, K. Megerle: Phys. Rev. 126, 941 (1962)ADSCrossRefGoogle Scholar
  15. 15.15.
    W.L. McMillan, J.L. Rowell: In Superconductivity 1, R.D. Parks (ed.) (Dekker, New York 1969)Google Scholar
  16. 15.16.
    R.M. Feenstra: Semicond. Sci. Technol. 9, 2157 (1994)ADSCrossRefGoogle Scholar
  17. 15.17.
    S.J. Tans et al.: Nature 386, 474 (1997)ADSCrossRefGoogle Scholar

Additional Reading Electron Energy Loss

  1. Fink J.: Advances in Electronics and Electron Physics 79, 155 (1989)Google Scholar
  2. Fink J. et al.: J. Electron Spectroscopy 66, 395 (1994)CrossRefGoogle Scholar
  3. Schülke W.: in Handbook on Synchrotron Radiation, Vol. 3, p. 565, G.S. Brown, D.E. Moncton eds. (North-Holland, Amsterdam 1991)Google Scholar

Tunneling Spectroscopy

  1. Hansma P.K.: Tunneling Spectroscopy: Capabilities, Applications and New Techniques (Plenum, New York 1982)CrossRefGoogle Scholar
  2. Smoliner J.: Semicond. Sci. Technol. 11, 1 (1996)ADSCrossRefGoogle Scholar
  3. Soethout L.L., Van Kempen H. , Van de Walle: Advances in Electronics and Electron Physics 79, 155 (1990)CrossRefGoogle Scholar
  4. Wolf E.L.: Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, Oxford 1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Hans Kuzmany
    • 1
    • 2
  1. 1.Institut für FestkörperphysikUniversität WienWienAustria
  2. 2.Ludwig-Boltzmann-Institut für FestkörperphysikWienAustria

Personalised recommendations