The Development of a Biological Control Agent against Ralstonia solanacearum Race 3 in Kenya

  • J. J. Smith
  • L. C. Offord
  • G. N. Kibata
  • Z. K. Murimi
  • A. Trigalet
  • G. S. Saddler
Chapter

Abstract

Indigenous populations of R. solanacearum affecting potato in Kenya were extensively characterised by a multifaceted approach including genomic fingerprinting by macro-restriction of genomic DNA resolved by pulsed field gel electrophoresis. From these studies clear isolate types were observed with varying frequency. Representative of these isolate types were mutated to a non-pathogenic form by 1) insertion of a DNA omega element into the Hrp cluster, or 2) deletion mutation through the insertion and eviction of the sacB gene of Bacillus subtilus. Inoculation of potato plants with the non-pathogenic omega mutants conferred a reduction in disease symptoms in the order of 30%.

Keywords

Sucrose Agar Electrophoresis Bacillus Pseudomonas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajanga S (1993) Status of bacterial wilt of potato in Kenya. In: Ed. G.L. Hartman GL and Hayward AC (eds) Bacterial Wilt: Proceedings of an International Conference held in Kaohsiung, Taiwan, 28 – 30 October 1992 (ACIAR proceedings No. 45), pp. 338 – 340, Canberra: Australian Centre for International Agricultural ResearchGoogle Scholar
  2. Andro T, Chambost JP, Kotoujansky A, Cattaneo J, Bertheau Y, Barras F, van Gijsegem F, Coleno A (1984) Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. J Bacteriol 160:1199 – 1203PubMedGoogle Scholar
  3. Cook D, Elizabeth B, Sequeira L, (1989) Genetic diversity of Pseudomonas solanacearum: Detection of restriction fragment length polymorphisms with DNA probes that specify virulence and hypersensitive response. Mol Plant-Microbe Interac 2:113 – 121CrossRefGoogle Scholar
  4. Frey P, Prior P, Marie C, Kotoujansky A, Trigalet-Demery D, Trigalet A (1994) Hrp” mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Appi Environ Microbiol 60:3175 – 3181Google Scholar
  5. Gross DC, Vivader AK (1990) Bacteriocins. In:. Rudolph, KK and Sands DC (eds) Methods in Phytobacteriology. Akademiai Kiado, Budapest, pp 245 – 249Google Scholar
  6. Hayward AC, Sequeira L, French ER, El-Nashaar HM, Nydegger U (1991) Tropical strain of Biovar 2 of P. solanacearum. Proceedings of the XV Meeting Asociasion Latinamerica de la Papa, March 10 – 17 Lima Peru (Abstract)Google Scholar
  7. Hynes MF, Quandt J, O’Connell MP, Punier (1989) Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene. Gene 78:111 – 120PubMedCrossRefGoogle Scholar
  8. Schwyn B, Neilands JB, (1987) Universal chemical assay for detection and determination of siderophores. Anal Biochem 160:47 – 56PubMedCrossRefGoogle Scholar
  9. Smith JJ, Offord LC, Holderness M, Saddler G S (1995a) Pulsed-field gel electrophoresis analysis of Pseudomonas solanacearum. In: proceedings of New Methods of Diagnosis in Plant Protection, European and Mediterranean Plant Protection Organisation Bulletin. 25:163 – 167Google Scholar
  10. Smith JJ, Offord LC, Holderness M, Saddler GS (1995b) Genetic diversity of Burkholderia solanacearum (syn. Pseudomonas solanacearum) race 3 in Kenya. Appl Environ Microbiol 61:4263 – 4268PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. J. Smith
  • L. C. Offord
  • G. N. Kibata
  • Z. K. Murimi
  • A. Trigalet
  • G. S. Saddler

There are no affiliations available

Personalised recommendations