Tumor Suppressor Genes

  • B. E. Weissman
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 27)


The isolation of the first human tumor suppressor gene in 1986 fueled an immediate interest in gene replacement therapy as a novel treatment modality for human cancers (Friend et al. 1986) . The functional groundwork for the efficacy of this avenue of approach came from studies on the genetics of cancer using somatic cell genetics. The first report, in 1969, of the suppression of malignancy in hybrid cells between tumorigenic and nontumorigenic mouse cells provided evidence that normal cells possess genetic information capable of reversing many transformed features of tumor cells (Harris et al. 1969) . Since that initial study, many investigators have shown that introduction of normal genetic information into human cancer cells can cause suppression of cell growth in vitro and in vivo (Stanbridge 1992). Thus, the challenge facing scientists interested in the development of cancer gene therapies lies in the optimal delivery of potent tumor suppressor genes into tumor cells in vivo which can render them quiescent or prime them for destruction by other methods. This chapter will cover the identification of known tumor suppressor genes as well as the strategies to isolate novel tumor suppressor genes with different mechanisms of action.


Tumor Suppressor Gene Cancer Gene Therapy Tumor Suppressor Activity Metastasis Suppressor Gene Somatic Cell Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asselineau D, Prunieras M (1984) Reconstruction of simplified control of fabrication. Br J Dematol [Suppl] 111:219–211CrossRefGoogle Scholar
  2. Bader SA, Fasching C, Brodeur GM et al (1991) Dissociation of suppression of tumorigenicity and differentiation in vitro effected by transfer of single human chromosomes into human neuroblastoma cells. Cell Growth Differ 2:245–255PubMedGoogle Scholar
  3. Benedict WF, Weissman BE, Mark C et al (1984) Tumorigenicity of humon HT 1080 fibrosarcoma X normal fibroblast hybrids: chromosome dosage dependency. Cancer Res 44:3471–3479PubMedGoogle Scholar
  4. Bishop JM (1987) The molecular genetics of cancer. Science 235:305–311PubMedCrossRefGoogle Scholar
  5. Bradbury LE, Kansas GS, Levy S et al (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 antigen. J Immunol 149:2841–2850PubMedGoogle Scholar
  6. Bremmer R, Balmain A (1990) Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61:407–417CrossRefGoogle Scholar
  7. Call KM, Glaser T, Ito CY et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520PubMedCrossRefGoogle Scholar
  8. Chen P, Ellmore N, Weissman BE et al (1994) Functional evidence for a second tumor suppressor gene on human chromosome 17. Mol Cell Biol 14:534–542PubMedGoogle Scholar
  9. Conway K, Morgan D, Phillips K et al (1992) Tumorigenic suppression of a human cutaneous squamous cell carcinoma cell line in the nude mouse skin graft assay. Cancer Res 52:6487–6495PubMedGoogle Scholar
  10. Crawford LV (1983) The 53000-dalton cellular protein and its role in transformation. Int Rev Exp Pathol 25:1–50PubMedGoogle Scholar
  11. Dear TN, Kefford RF (1990) Molecular oncogenetics of metastasis. Mol Aspects Med 11:243–324PubMedCrossRefGoogle Scholar
  12. Devilee P, Van Den Broek M, Mannens M et al (1991) Differences in patterns of allelic loss between two common types of adult cancer, breast and colon carcinoma, and Wilms’ tumor of childhood. Int J Cancer 47:817–821PubMedCrossRefGoogle Scholar
  13. Dong JT, Lang PW, Rinker-Schaeffer CW et al (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886PubMedCrossRefGoogle Scholar
  14. Dowdy SF, Fasching CL, Scanion DJ et al (1991) Suppression of tumorigenicity in Wilms’ tumor by the pl4:pl5 region of chromosome 11. Science 254:293–295PubMedCrossRefGoogle Scholar
  15. Drummond IA, Madden SI et al (1992) Repression of the insulin-like growth factor II gene by the Wilms’ tumor suppressor WT1. Science 257:674–678PubMedCrossRefGoogle Scholar
  16. Ege T, Ringertz NR (1974) Preparation of microcells by enucleation of micro-nucleated cells. Exp Cell Res 87:378–382PubMedCrossRefGoogle Scholar
  17. Eliyahu D, Michalovitz D et al (1989) Wild-type p53 can inhibit oncogene-me-diated focus formation. Proc Natl Acad Sci USA 86:8763–8767PubMedCrossRefGoogle Scholar
  18. Fearon ER, Cho KR, Nigro JM et al (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56PubMedCrossRefGoogle Scholar
  19. Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1082–1093CrossRefGoogle Scholar
  20. Fournier REK, Ruddle FH (1977) Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci USA 74:319–323PubMedCrossRefGoogle Scholar
  21. Friend SH, Bernards S, Rogelj S et al (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646PubMedCrossRefGoogle Scholar
  22. Fukudome K, Fururse M, Imai T et al (1992) Identification of membrane antigen C33 recognized by monoclonal antibodies inhibitory to human T-cell leukemia virus type 1 (HTLV-l)-induced syncytium formation: altered gly-cosylation of C33 antigen in HTLV-1-positive T cells. J Virol 66:1394–1401PubMedGoogle Scholar
  23. Fung Y-K, Murphree Al, Tang A et al (1987) Structural evidence for the authenticity of the human retinoblastoma gene. Science 236:1657–1661PubMedCrossRefGoogle Scholar
  24. Fusenig NE, Breitkreutz D, Dzarlieva RT, Boukamp P, Bohnert A, Tilgen W (1983) Growth and differentiation characteristics of transformed keratino-cytes from mouse and human skin in vitro and in vivo. J Invest Dermatol 81:168s–175sPubMedCrossRefGoogle Scholar
  25. Futreal PA, Liu Q, Shattuck-Eidens D et al (1994) BRCAl mutations in primary breast and ovarian carcinomas. Science 266:120–122PubMedCrossRefGoogle Scholar
  26. Geiser AG, Anderson MJ, Stanbridge EJ et al (1989) Suppression of tumorigenicity in human cell hybrids derived from cell lines expressing different activated ras oncogenes. Cancer Res 49:1572–1577PubMedGoogle Scholar
  27. Gessler M, Poustka A et al (1990) Homozygous deletion in Wilms’ tumors of a zinc-finger gene identified by chromosome jumping. Nature 343:774–778PubMedCrossRefGoogle Scholar
  28. Giard DJ, Aaronson SA, Todaro GJ et al (1974) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423Google Scholar
  29. Gioeli D, Conway K, Weissman BE et al (1997) Localization and characterization of a chromosome 11 tumor suppressor gene using organotypic raft cultures. Cancer Res 57:1157–1165PubMedGoogle Scholar
  30. Groden J, Thilveris A, Samowitz W et al (1991) Identification and characterization of the familiar adenomatous polyposis coli gene. Cell 66:589–600PubMedCrossRefGoogle Scholar
  31. Hahn H, Wicking C, Zaphiropoulos PG et al (1996a) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851PubMedCrossRefGoogle Scholar
  32. Hahn SA, Schutte M, Hoque ATMS et al (1996b) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353PubMedCrossRefGoogle Scholar
  33. Hampton GM, Mannerma A, Winquist R et al (1994a) Loss of heterozygosity in sporadic human breast carcinoma: a common region between llq22 and 1 lq23.3. Cancer Res 54:4586–4589PubMedGoogle Scholar
  34. Hampton GM, Penny LA, Baorgen RN et al (1994b) Loss of heterozygosity in cervical carcinoma: subchromosomal localization of a putative tumor-suppressor gene to chromosome 1lq22-q24. Proc Natl Acad Sci USA 91:6953–6957PubMedCrossRefGoogle Scholar
  35. Hao Y, Crenshaw T, Moulton T et al (1993) Tumor-suppressor activity of H19 RNA. Nature 365:764–767PubMedCrossRefGoogle Scholar
  36. Harris H, Miller OJ, Klein G et al (1969) Suppression of malignancy by cell fusion. Nature 223:363–368PubMedCrossRefGoogle Scholar
  37. Hartwell L (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71:543–546PubMedCrossRefGoogle Scholar
  38. Helin K, Harlow E (1993) The retinoblastoma protein as a transcriptional repressor. Trends Cell Biol 3:43–46PubMedCrossRefGoogle Scholar
  39. Heo DS, Snyderman C, Gollin SM et al (1989) Biology, cytogenetics and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res 49:5167–5175PubMedGoogle Scholar
  40. Huang Y, Meltzer SJ et al (1993) Altered messenger RNA and unique mutati-nal profiles of p53 and Rb in human esophageal carcinomas. Cancer Res 53:1889–1894PubMedGoogle Scholar
  41. Imai T, Fukudome K, Tagai S et al (1992) C33 antigen recognized by monoclonal antibodies inhibitory to human T cell leukemia virus type 1-induced syncytium formation is a member of a new family of transmembrane proteins including CD9, CD37, CD53, and CD63. J Immunol 149:2879–2886PubMedGoogle Scholar
  42. Johnson RL, Rothman Al, Xie J et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671PubMedCrossRefGoogle Scholar
  43. Kinzler KW, Nilbert MC, Su L-K, et al (1991a) Identification of FAP locus genes from chromosome 5q21. Science 253:661–669PubMedCrossRefGoogle Scholar
  44. Kinzler KW, Nilbert MC, Vogelstein B et al (1991b) Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251:1366–1370PubMedCrossRefGoogle Scholar
  45. Koi M, Monta H, Yamada H et al (1989) Normal human chromosome 11 suppresses tumorigenicity of human cervical tumor cell line SiHa. Mol. Carcinogenesis 2:12–21CrossRefGoogle Scholar
  46. Kolodner RD (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 10:1433–1442PubMedCrossRefGoogle Scholar
  47. Koufos A, Grundy P et al (1989) Familial Wiedemann-Beckwith syndrome and a second Wilms’ tumor locus both map to 11p15.5. Am J Hum Genet 44:711–719PubMedGoogle Scholar
  48. Kratzke RA, Greatens TM, Rubins JB et al (1996) Rb and pl6 INK4a Expression in resected non-small cell lung tumors. Cancer Res 56:3415–3420PubMedGoogle Scholar
  49. Latif F, Tory K, Gnarra J et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1320–1357CrossRefGoogle Scholar
  50. Lee W-H, Bookstein R, Hong F et al (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235:1394–1399PubMedCrossRefGoogle Scholar
  51. Li J, Yen C, Liaw D et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 275:1943–1947PubMedCrossRefGoogle Scholar
  52. Loh WE, Scrable HJ, Livanos E et al (1992) Human chromosome 11 contains two different growth suppressor genes for embryonal rhabdomyosarcoma. Proc Natl Acad Sci USA 89:1755–1759PubMedCrossRefGoogle Scholar
  53. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRefGoogle Scholar
  54. Misra BC, Srivatsan ES (1989) Localization of HeLa cell tumor-suppressor gene to the long arm of chromosome 11. Am J Human Genet 45:565–577Google Scholar
  55. Muktar H, Bickers DR (1993) Environmental skin cancer: mechanisms, models and human cancer. Cancer Res 53:3439–3442Google Scholar
  56. Negrini M, Rasio D, Hampton GM et al (1992) Suppression of tumorigenesis by the breast cancer cell line MCF-7 following transfer of normal human chromosome 11. Oncogene 7:2013–2018PubMedGoogle Scholar
  57. Negrini M, Castagnoli A, Sabbioni S et al (1994) Suppression of tumorigenic-ity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res 54:1331–1336PubMedGoogle Scholar
  58. Negrini M, Sabbioni S, Possati L et al (1995) Definition and refinement of chromosome 11 regions of loss of heterozygosity in breast cancer: identification of a new region at 1lq23.3. Cancer Res 55:3003–3007PubMedGoogle Scholar
  59. Nigro JM, Baker SJ, Preisinger AC et al (1989) Mutations in the p53 gene occur in diverse human tumor types. Nature 342:705–708PubMedCrossRefGoogle Scholar
  60. Nojima Y, Hirose T, Tachibana K et al (1993) The 4F9 antigen is a member of the tetraspan transmembrane protein family and functions as an accessory molecule in T cell activation and adhesion. Cell Immunol 152:249–260PubMedCrossRefGoogle Scholar
  61. Pasquale SR, Jones GR, Doersen C-J et al (1988) Tumorigenicity and oncogene expression in pediatric cancers. Cancer Res 48:2715–2719PubMedGoogle Scholar
  62. Pereira-Smith OM, Smith JR (1983) Evidence for the recessive nature of cellular immortality. Science 221:964–966PubMedCrossRefGoogle Scholar
  63. Phillips KK, Welch DR, Miele ME et al (1996) Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Res 56:1222–1227PubMedGoogle Scholar
  64. Phillips KK, White AE, Hicks DJ et al (1998) Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Mol Carcinog 21:111–120PubMedCrossRefGoogle Scholar
  65. Pietenpol JA, Stein RW, Moran E et al (1990) TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–785PubMedCrossRefGoogle Scholar
  66. Qazilbash MH, Xiao X, Seth P et al (1997) Cancer gene therapy using a novel adeno-associated virus vector expressing human wild -type p53. Gene Ther 4:675–682PubMedCrossRefGoogle Scholar
  67. Reed AL, Califano J, Cairns P et al (1996) High frequency of pl6 (CDKN2/MTS-1/INK4 A) inactivation in head and neck squamous cell carcinoma. Cancer Res 56:3630–3633PubMedGoogle Scholar
  68. Reeve AE, Sih SA, Raizis AM et al (1989) Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol Cell Biol 9:1799–1803PubMedGoogle Scholar
  69. Reid LH, West A, Gioii DG et al (1996) Localization of a tumor suppressor gene in 11p15.5 using the G401 Wilms’ tumor assay. Hum Mol Genet 5:239–247PubMedCrossRefGoogle Scholar
  70. Rotter V, Foord O, Navot N (1993) In search of the functions of normal p53 protein. Trends Cell Biol 3:43–46CrossRefGoogle Scholar
  71. Savitsky K, Bar-Shira A, Gilad S et al (1995) A single ataxia telangeictasia gene with a product similar to PI-3 kinase. Science 268:1749–1753PubMedCrossRefGoogle Scholar
  72. Saxon PJ, Srivatsan ES, Stanbridge EJ (1986) Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. EMBO J 5:3461–3466PubMedGoogle Scholar
  73. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677PubMedCrossRefGoogle Scholar
  74. Stanbridge EJ (1992) Functional evidence for human tumor suppressor genes: chromosomal and molecular genetic studies. Cancer Surv 12:5–24PubMedGoogle Scholar
  75. Stanbridge EJ, Flandemeyer R, Daniels D et al (1981) Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somat Cell Genet 7:699–712PubMedCrossRefGoogle Scholar
  76. Steck PA, Pershouse MA, Jasser SA et al (1997) Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362PubMedCrossRefGoogle Scholar
  77. Steeg PS, Bevilacqua G, Pozzatti R et al (1988) Altered expression of NM23, a gene associated with low tumor metastic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48:6550–6554PubMedGoogle Scholar
  78. Takahashi S, Doss C, Levy S et al (1990) Tapa-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol 145:2207–2213PubMedGoogle Scholar
  79. Tlsty T, White A, Sanchez J (1992) Suppression of gene amplification in human cell hybrids. Science 255:1425–1427PubMedCrossRefGoogle Scholar
  80. Trent J, Yang JM, Emerson J et al (1993) Clonal chromosome abnormalities in human breast carcinomas: thirty-four cases with metastatic disease. Genes Chromos Cancer 7:194–203PubMedCrossRefGoogle Scholar
  81. Trofatter JA, MacCollin MM, Rutter JL et al (1993) A novel Moesin-Ezrin-Radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor gene. Cell 72:791–800PubMedCrossRefGoogle Scholar
  82. Virtaneva KI, Emi N, Marken JS et al (1994) Chromosomal localization of three human genes coding for A15, L6, and S5.7 (TAPA1): all members of the transmembrane 4 superfamily of proteins. Immunogenetics 39:329–334PubMedCrossRefGoogle Scholar
  83. Viskochil D, Buchberg AM, Xu G et al (1990) Deletions and a translocation interrupt a cloned at the neurofibromatosis type 1 locus. Cell 62:187–192PubMedCrossRefGoogle Scholar
  84. Vogelstein B, Fearon ER, Kern SE et al (1989) Allelotype of colorectal carcinomas. Science 244:207–211PubMedCrossRefGoogle Scholar
  85. Vogelstein B, Kinzler KW (1992) p53 function and dysfunction. Cell 70:523–529PubMedCrossRefGoogle Scholar
  86. Wallace MR, Marchuk DA, Anderson LB et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186PubMedCrossRefGoogle Scholar
  87. Wang Z, Madden SL, Deuel TF et al (1992) The Wilms’ tumor gene product, WT1 represses transcription of the platelet-derived growth factor A-chain gene. J Biol Chem 267:21999–22002PubMedGoogle Scholar
  88. Weinberg RA (1989) The molecular basis of retinoblastomas. Ciba Found Symp 142:99–105PubMedGoogle Scholar
  89. Weissman BE (1990) Genetic behaviour of tumor genicity in human cancer. In: Cavenee W, Ponder B, Solomon E (eds) Cancer surveys-genetics and cancer, vol 9. Oxford University Press, Oxford, pp 475–485Google Scholar
  90. Weissman BE, Conway K (1995) Genetic aspects of tumor suppressor genes. Adv Genome Biol 3A: 137–156Google Scholar
  91. Weissman BE, Saxon PJ, Pasquale SR et al (1987) Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression. Science 236:175–180PubMedCrossRefGoogle Scholar
  92. Weissman BE, Stanbridge EJ (1983) Complementation of the tumorigenic phenotype in human cell hybrids. J Natl Cancer Inst 70:666–672Google Scholar
  93. Wilson JL, Dollard SC, Chow LT, Broker TR (1992) Epithelial-specific gene expression during differentiation of stratified primary human keratinocyte cultures. Cell Growth Differ 3:471–483PubMedGoogle Scholar
  94. Winquist R, Mannerma A, Alvaikko M et al (1993) Refinement of regional loss of heterozygosity for chromosome 11pl5.5 in human breast tumors. Cancer Res 53:4486–4488Google Scholar
  95. Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792CrossRefPubMedGoogle Scholar
  96. Wright MD, Tomlinson MG (1994) The ins and outs of the transmembrane 4 superfamily. Immunol Today 15:588–594PubMedCrossRefGoogle Scholar
  97. Xiong Y, Zhang H, Beach D (1992) D type Cyclins associated with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514PubMedCrossRefGoogle Scholar
  98. Yamada H, Wake N, Fujimoto S et al (1990) Multiple chromosomes carrying tumor suppressor activity for a uterine endometrial carcinoma cell line identified by microcell-mediated chromosome transfer. Oncogene 5:1141–1147PubMedGoogle Scholar
  99. Yang X, Welch DR, Philips KK et al (1997) KaII, a putative marker for metastatic potential in human breast cancer. Cancer Lett 119:149–155PubMedCrossRefGoogle Scholar
  100. Zhang H, Tombline G, Weber WL et al (1998) BRCA1, BRCA2, and DNA damage response: collision or collusion? Cell 92:433–436PubMedCrossRefGoogle Scholar
  101. Zutter MM, Cantora SA, Stotz WD et al (1995) Re-expression of the @2ßl integrin abrogates the malignant phenotype of breast carcinoma cells. Proc Natl Acad Sci USA 92:7411–7415PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. E. Weissman

There are no affiliations available

Personalised recommendations