Advertisement

REDOR NMR of Biological Solids: From Protein Binding Sites to Bacterial Cell Walls

  • J. Schaefer
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 26)

Abstract

Details of the structure and dynamics of proteins, nucleic acids, and their complexes are commonly obtained from two sources: X-ray crystallography and solution-state nuclear magnetic resonance (NMR). However, some proteins and protein complexes crystallize poorly or not at all. Many of these same proteins are insoluble, or aggregate in solution, or exceed the effective molecular-weight limit for solution-state NMR. Such systems may be suitable for analysis by solid-state NMR (Griffiths and Griffin 1993; Smith et al. 1996; McDowell and Schaefer 1996).

Keywords

Nuclear Magnetic Resonance Ternary Complex Dipolar Coupling Rotor Cycle Phosphonate Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anborgh PH, Parmeggiani A (1991) New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EMBO J 10:779–784PubMedGoogle Scholar
  2. Anderson KS, Johnson KA (1990) Kinetic and structural analysis of enzyme intermediates: lessons from EPSP synthase. Chem Rev 90:1131–1149CrossRefGoogle Scholar
  3. Anderson KS, Sikorski JA, Johnson KA (1988) Evaluation of 5-enolpyruvoyl-shikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements. Biochemistry 27:1604–1610PubMedCrossRefGoogle Scholar
  4. Archer SJ, Bax A, Roberts AB, Sporn MB, Ogawa Y, Piez KA, Weatherbee JA, Tsang ML-S, Lucas R, Zheng B-L, Wenker J, Torchia DA (1993) Transforming growth factor β1: NMR signal assignments of the recombinant protein expressed and isotopically enriched using Chinese hamster ovary cells. Biochemistry 32: 1152–1163PubMedCrossRefGoogle Scholar
  5. Beauregard DA, Williams DH, Gwynn MN, Knowles DJC (1995) Dimeriza-tion and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother 39:781–785PubMedCrossRefGoogle Scholar
  6. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Hetero-nuclear decoupling in rotating solids. J Chem Phys 103:6951–6958CrossRefGoogle Scholar
  7. Berchtold H, Reshetnikova L, Reiser COA, Schirmer NK, Sprinzl M, Hilgen-feld R (1993) Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365:126–132PubMedCrossRefGoogle Scholar
  8. Beusen DD, McDowell, LM, Slomczynska U, Schaefer J (1995) Solid-state NMR analysis of the conformation of an inhibitor bound to thermolysin. J Med Chem 38:2742–2747PubMedCrossRefGoogle Scholar
  9. Blumenthal T, Landers TA, Weber K (1972) Bacteriophage Qß replicase contains the protein biosynthesis elongation factors EF/Tu and EF/Ts. Proc Natl Acad Sei USA 69:1313–1317CrossRefGoogle Scholar
  10. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127PubMedCrossRefGoogle Scholar
  11. Christensen AM, Schaefer J (1993) Solid-state NMR determination of intra-and intermolecular 31P- 13C distances for shikimate 3-phosphate and [1–13C]glyphosate bound to enolpyruvylshikimate-3-phosphate synthase. Biochemistry 32:2868–2873PubMedCrossRefGoogle Scholar
  12. Ghuysen J-M, Strominger JL, Tipper DJ (1968) Bacterial cell walls. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 26A. Elsevier, Amsterdam, pp 53–104Google Scholar
  13. Goetz JM, Schaefer J (1997) REDOR dephasing by multiple spins in the presence of molecular motion. J Magn Reson 127:147–154PubMedCrossRefGoogle Scholar
  14. Griffiths JM, Griffin RG (1993) Nuclear magnetic resonance methods for measuring dipolar couplings in rotating solids. Anal Chim Acta 283:1081–1101CrossRefGoogle Scholar
  15. Gullion T, Schaefer J (1989a) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200Google Scholar
  16. Gullion T, Schaefer J (1989b) Detection of weak heteronuclear dipolar coupling by rotational-echo double-resonance NMR. Adv Magn Reson 13:57–83CrossRefGoogle Scholar
  17. Gullion T, Baker DB, Conradi MS (1990) New, compensated Carr-Purcell sequences. J Magn Reson 89:479–484Google Scholar
  18. Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C (1994) An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Biochemistry 33:8651–8661PubMedCrossRefGoogle Scholar
  19. Hirsh DJ, Hammer J, Maloy WL, Blazyk J, Schaefer J (1996) Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Biochemistry 35:12733–12741PubMedCrossRefGoogle Scholar
  20. Holl SM, Kowalewski T, Schaefer J (1996) Characterization of two forms of cadmium phosphide by magic-angle-spinning P-31 NMR. Solid State NMR 6:39–46CrossRefGoogle Scholar
  21. Hsiao C-D, Sun Y-J, Rose J, Wang B-C (1996) The crystal structure of glutamine-binding protein from Escherichia coli. J Mol Biol 262:225–242PubMedCrossRefGoogle Scholar
  22. Kjeldgaard M, Nyborg J (1992) Refined structure of elongation factor EF-Tu from Escherichia coli. J Mol Biol 223:721–742PubMedCrossRefGoogle Scholar
  23. Klug CA, Tasaki K, Tjandra N, Ho C, Schaefer J (1997) Closed form of li-ganded glutamine-binding protein by rotational-echo double-resonance NMR. Biochemistry 36:9405–9408PubMedCrossRefGoogle Scholar
  24. Labischinski H, Hochberg M, Sidow T, Maidhof H, Henze U, Berger-Bächi B, Weche J (1993) Biophysical and biochemical studies on the fine structure of the sacculi from Escherichia coli and Staphylococcus aureus. In: DePe-dro MA, Höltje JV, Löffelhardt W (eds) Bacterial growth and lysis: metabolism and structure of the bacterial sacculus. Plenum, New York, pp 9–21Google Scholar
  25. Leps B, Labischinski H, Bradaczek H, (1987) Conformational behavior of the polysaccharide backbone of murein. Biopolymers 26:1391–1406PubMedCrossRefGoogle Scholar
  26. Liu J, Volk KJ, Lee MS, Pucci M, Handwerger S (1994) Binding studies of vancomycin to the cytoplasmic peptidoglycan precursors by affinity capillary electrophoresis. Anal Chem 66:2412–2416PubMedCrossRefGoogle Scholar
  27. Marquis RE (1968) Salt-induced contraction of bacterial cell walls. J Bacteriol 95:775–781PubMedGoogle Scholar
  28. Marshall GR, Beusen DD, Kociolek K, Redlinski AS, Leplawy MT, Pan Y, Schaefer J (1990) Determination of a precise interatomic distance in a helical peptide by REDOR NMR. J Am Chem Soc 112:963–966CrossRefGoogle Scholar
  29. McDowell LM, Schaefer J (1996) High-resolution NMR of biological solids. Curr Opin Struct Biol 6:624–629PubMedCrossRefGoogle Scholar
  30. McDowell LM, Barkan D, Wilson GE, Schaefer J (1996a) Structural constraints on the complex of elongation-factor Tu with magnesium guanosine diphosphate from rotational-echo double-resonance NMR. Solid State Nucl Magn Reson 7:203–210PubMedCrossRefGoogle Scholar
  31. McDowell LM, Klug CA, Beusen DD, Schaefer J (1996b) Ligand geometry of the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase from rotational-echo double-resonance NMR. Biochemistry 35:5395–5403PubMedCrossRefGoogle Scholar
  32. McDowell LM, Lee M, McKay RA, Anderson KS, Schaefer J (1996c) Inter-subunit communication in tryptophan synthase by carbon-13 and fluorine-19 REDOR NMR. Biochemistry 35:3328–3334PubMedCrossRefGoogle Scholar
  33. McDowell LM, Schmidt A, Cohen ER, Studelska DR, Schaefer J (1996d) Structural constraints on the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase from rotational-echo double-resonance NMR. J Mol Biol 256:160–171PubMedCrossRefGoogle Scholar
  34. Mueller DD, Schmidt A, Pappan KL, McKay RA, Schaefer J (1995) Activator carbamino carbon to inhibitor phosphorus internuclear distances in ribu-lose-l,5-bisphosphate carboxylase/oxygenase. A solid state NMR study. Biochemistry 34:5597–5603PubMedCrossRefGoogle Scholar
  35. Ou L-T, Marquis RE (1970) Electromechanical interactions in cell walls of gram-positive cocci. J Bacteriol 101:92–101PubMedGoogle Scholar
  36. Reynolds PE (1989) Structure, biochemistry and mechanism of action of gly-copeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950PubMedCrossRefGoogle Scholar
  37. Reynolds PE, Snaith HA, Maguire AJ, Dutka-Malen S, Courvalin P (1994) Analysis of peptidoglycan precursors in vancomycin-resistant Enterococcus gallinarum BM4174. Biochem J 301:5–8PubMedGoogle Scholar
  38. Reynolds PE, Somner EA (1990) Comparison of the target sites and mechanisms of action of glycopeptide and lipoglycodepsipetide antibiotics. Drugs Exp Clin Res 16:385–389PubMedGoogle Scholar
  39. Rogers HJ, Perkins HR, Ward JB (1980) Microbial cell walls and membranes. Chapman and Hall, LondonCrossRefGoogle Scholar
  40. Saitô H (1986) Conformation-dependent C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn Reson Chem 24:835–852CrossRefGoogle Scholar
  41. Sieradzki K, Tomasz A (1996) A highly vancomycin-resistant laboratory mutant of Staphylococcus aureus. FEMS Microbiol Lett 142:161–166PubMedCrossRefGoogle Scholar
  42. Smith SO, Aschheim K, Groesbeek M (1996) Magic-angle-spinning NMR-spectroscopy of membrane-proteins. Q Rev Biophys 29:395–449PubMedCrossRefGoogle Scholar
  43. Stallings WC, Abdel-Meguid SS, Lim LW, Shieh H-S, Dayringer HE, Le-imgruber NK, Stegeman RA, Anderson KS, Sikorski JA, Padgette SR, Kishore GM (1991) Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a distinctive protein fold. Proc Natl Acad Sci USA 88:5046–5050PubMedCrossRefGoogle Scholar
  44. Steinrücken HC, Amrhein N (1984a) 5-Enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae. 1. Purification and properties. Eur J Biochem 143:341–349PubMedCrossRefGoogle Scholar
  45. Steinrücken HC, Amrhein N (1984b) 5-Enolpyruvylshikimate-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition by glyphosate [N-(phos-phonomethyl)glycine]. Eur J Biochem 143:351–357PubMedCrossRefGoogle Scholar
  46. Stejskal EO, Memory JD (1994) High resolution NMR in solid state: fundamentals of CP/MAS. Oxford University Press, New York, p 65Google Scholar
  47. Studelska DR, Klug CA, Beusen DD, McDowell LM, Schaefer J (1996) Longrange distance measurements of protein binding sites by REDOR NMR. J Am Chem Soc 118:5476–5477CrossRefGoogle Scholar
  48. Tong G, Pan Y, Dong H, Pryor R, Wilson GE, Schaefer J (1997) Structure and dynamics of pentaglycyl bridges in the cell walls of Staphylococcus aureus by 13C-15N REDOR NMR. Biochemistry 36:9859–9866PubMedCrossRefGoogle Scholar
  49. Williams DH (1996) The glycopeptide story — how to kill the deadly “super-bugs.” Nat Prod Rep 469–477Google Scholar
  50. Wooley KL, Klug CA, Tasaki K, Schaefer J (1997) Shapes of dendrimers from rotational-echo double-resonance NMR. J Am Chem Soc 119:53–58CrossRefGoogle Scholar
  51. Wright GD, Walsh CT (1992) D-alanyl-D-alanine ligases and the molecular mechanism of vancomycin resistance. Acc Chem Res 25:468–473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. Schaefer

There are no affiliations available

Personalised recommendations