The Wonderful World of Carbon

  • M. S. Dresselhaus
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 33)

Abstract

A broad overview of the structure and properties of the various forms of carbon is presented, emphasizing the wide variety of behavior exhibited by carbonbased materials. The connection between quasi-two-dimensional graphite, which is the lowest energy bulk form, to the zero-dimensional quantum dot fullerene clusters and the one-dimensional quantum wire carbon nanotubes is discussed. The structure and properties of several disordered forms of carbon, which are of interest for potential device applications, are briefly reviewed. The review emphasizes future opportunities in this research field.

Keywords

Crystallization Graphite Carbide Lithium Cage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: Nature 318, 162–163 (1985)CrossRefGoogle Scholar
  2. 2.
    S. Iijima: Nature 354, 56 (1991)CrossRefGoogle Scholar
  3. 3.
    F.P. Bundy, W.A. Bassett, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov: Carbon 34, 141–153 (1996)CrossRefGoogle Scholar
  4. 4.
    F.P. Bundy: dagd in Solid State Physics under Pressure: Recent Advance with Anvil Devices, p. 1, S. Minomura (ed.) D. Reidel, Dordrecht, 1985Google Scholar
  5. 5.
    A.G. Whittaker, E.J. Watts, R.S. Lewis, E. Anders: Science 209, 1512 (1980)Google Scholar
  6. 6.
    A.G. Whittaker, P.L. Kintner: Carbon 23, 255 (1985)CrossRefGoogle Scholar
  7. 7.
    V.I. Kasatochkin, V.V. Korshak, Y.P. Kudryavtsev, A.M. Sladkov, I.E. Sterenberg: Carbon 11, 70 (1973)CrossRefGoogle Scholar
  8. 8.
    S. Tanuma, A. Palnichenko: J. Mater. Res. 10, 1120 (1995)CrossRefGoogle Scholar
  9. 9.
    S.I. Tanuma, A. Palnichenko: fhsdhf in Proceedings of the International Conference on Intercalation Compounds, pp. 1163–1166 (World Scientific Publishing Co. Ltd., Singapore, 1995) Vancouver, CanadaGoogle Scholar
  10. 10.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund: Science of Fullerens and Carbon Nanotubes (Academic Press, New York, NY, 1996)Google Scholar
  11. 11.
    B.T. Kelly: in Physics of Graphite (Applied Science, London, 1981)Google Scholar
  12. 12.
    M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, H.A. Goldberg: Graphite Fibers and Filaments (Springer-Verlag, Berlin, 1988), Vol. 5 of Springer Series in Materials Science CrossRefGoogle Scholar
  13. 13.
    K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus: Phys. Rev. B 54, 17954–17961 (1996)CrossRefGoogle Scholar
  14. 14.
    K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo: Science 264, 556 (1994)CrossRefGoogle Scholar
  15. 15.
    M.S. Dresselhaus, G. Dresselhaus: Adv. Phys. 30, 139–326 (1981)CrossRefGoogle Scholar
  16. 16.
    M. Nakadaira, R. Saito, T. Kimura, G. Dresselhaus, M.S. Dresselhaus: J. Mater. Res. 12 (May 1997)Google Scholar
  17. 17.
    M.J. Matthews, M.S. Dresselhaus, M. Endo, Y. Sasabe, T. Takahashi, K. Takeuchi: J. Mater. Res. 11, 3099–3109 (1996)CrossRefGoogle Scholar
  18. 18.
    R.B. Heimann, J. Kleinman, N.M. Slansky: Nature 306, 164 (1983)CrossRefGoogle Scholar
  19. 19.
    H. Zabel, S.A. Solin (eds) in: Graphite Intercalation Compounds II: Transport and Electronic Properties. Springer Series in Materials Science, Vol. 18 (Springer, Berlin 1992)Google Scholar
  20. 20.
    M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino, K. Morita: Carbon 27, 253 (1988)CrossRefGoogle Scholar
  21. 21.
    Y. Hishiyama, Y. Kaburagi, M. Inagaki: sfljsf in Chemistry and Physics of Carbon, Vol. 23, p. 1, P.A. Thrower (ed.) Marcel Dekker, New York, 1991Google Scholar
  22. 22.
    W. Krätschmer, K Fostiropoulos, D.R. Huffman: fhakfc in Dusty Objects in the Universe, E. Bussoletti, A.A. Vittone (eds.) Kluwer Academic Publishers, Dordrecht, 1989. Proceedings of the 4th Intern. Workshop of the Astronomical Observatory of Capodimonte, Capri, ItalyGoogle Scholar
  23. 23.
    E.G. Gamaly, T.W. Ebbesen: Phys. Rev. B 52, 2083 (1995)CrossRefGoogle Scholar
  24. 24.
    M. Kaiser, W.K. Maser, H.J. Byrne, A. Mittelbach, S. Roth: Solid State Cormmun. 87, 281–283 (1993)CrossRefGoogle Scholar
  25. 25.
    R. Könenkamp, J. Erxmeyer, A. Weidinger: Appl. Phys. Lett. 65, 758–760 (1994)CrossRefGoogle Scholar
  26. 26.
    A.M. Rao, P. Zhou, K.-A. Wang, G.T. Hager, J.M. Holden, Ying Wang, W.T. Lee, Xiang-Xin Bi, P.C. Eklund, D.S. Cornett, M.A. Duncan, I.J. Amster: Science 259, 955–957 (1993)CrossRefGoogle Scholar
  27. 27.
    A.F. Hebard, C.B. Eom, R.M. Fleming, Y.J. Chabal, A.J. Muller, S.H. Glarum, G.J. Pietsch, R.C. Haddon, A.M. Mujsce, M.A. Paczkowski, G.P. Kochanski: ApO. Phvs. A 57, 299–303 (1993)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, J.M. Holden, Z.H. Dong, X.X. Bi, P.C. Eklund: Chem. Phys. Lett. 211, 341 (1993)CrossRefGoogle Scholar
  29. 29.
    S.B. Fleischer, B. Pevzner, D.J. Dougherty, E.P. Ippen, M.S. Dressenhaus, A.F. Hebard: Appl. Phys. Lett. 69, 296–298 (1996)CrossRefGoogle Scholar
  30. 30.
    R. Tavlor, D.R.M. Walton: Nature 363, 685 (1993)CrossRefGoogle Scholar
  31. 31.
    A.V. Hamza, M. Balooch, M. Moalem: Surf. Sci. 317, L1129–L1135 (1994)CrossRefGoogle Scholar
  32. 32.
    J. Viitanen: J. Vac. Sci. Technol. B: Microelectronics Processing, Phenomena 11, 115–116 (1993)CrossRefGoogle Scholar
  33. 33.
    M. Devel, C. Girard, C. Joachim, O.J.F. Martin: Appl. Surf. Sci. 87–88, 390–397 (1995)CrossRefGoogle Scholar
  34. 34.
    D.S. Bethune, R.D. Johnson, J.R. Salem, M.S. de Vries, C.S. Yannoni: Nature 366, 123 (1993)CrossRefGoogle Scholar
  35. 35.
    S. Saito, S. Sawada, N. Hamada: Phys. Rev. B 45, 13 845 (1992)Google Scholar
  36. 36.
    U. Zimmermann, N. Malinowski, U. Näher, S. Frank, T.P. Martin: Phys. Rev. Lett. 72, 3542 (1994)CrossRefGoogle Scholar
  37. 37.
    T.P. Martin, N. Malinowski, U. Zimmermann, U. Näher, H. Schaber: J. Chem. Phys. 99, 4210 (1993)CrossRefGoogle Scholar
  38. 38.
    J. Kohanofl, W. Andreoni, M. Parrinello: Chem. Phys. Lett. 198, 472 (1992)CrossRefGoogle Scholar
  39. 39.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito: Carbon 33, 883–891 (1995)CrossRefGoogle Scholar
  40. 40.
    S. Iijima, T. Ichihashi: Nature 363, 603 (1993)CrossRefGoogle Scholar
  41. 41.
    D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Nature 363, 605 (1993)CrossRefGoogle Scholar
  42. 42.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomaánek, J.E. Fischer, R. E. Smalley: Science 273, 483 (1996)CrossRefGoogle Scholar
  43. 43.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus: Appl. Phys. Lett. 60, 2204 (1992)CrossRefGoogle Scholar
  44. 44.
    C.H. Olk, J.P. Heremans: J. Mater. Res. 9, 259 (1994)CrossRefGoogle Scholar
  45. 45.
    T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio: Nature 382, 54–56 (1996)CrossRefGoogle Scholar
  46. 46.
    M.S. Dresselhaus: Physics World (May 1996), pp. 18–19Google Scholar
  47. 47.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus: Phys. Rev. B 53, 2044 (1996)CrossRefGoogle Scholar
  48. 48.
    L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen: Phys. Rev. Lett. 76, 971 (1996)CrossRefGoogle Scholar
  49. 49.
    Ph. Lambin, A. Fonseca, J.P. Vigneron, J.B. Nagy, A.A. Lucas: Chem. Phys. Lett. 245, 85 (1995)CrossRefGoogle Scholar
  50. 50.
    Y. Saito: Carbon 33, 979 (1995)CrossRefGoogle Scholar
  51. 51.
    Y. Saito, T. Yoshikawa, M. Okuda, M. Ohkohchi, Y. Ando, A. Kasuya, Y. Nishina: Chem. Phys. Lett. 209, 72 (1994)CrossRefGoogle Scholar
  52. 52.
    D. Ugarte: Nature 359, 707 (1992). see also ibid H.W. Kroto, p. 670CrossRefGoogle Scholar
  53. 53.
    D. Ugarte: Chem. Phys. Lett. 207, 473 (1993)CrossRefGoogle Scholar
  54. 54.
    D. Ugarte: Carbon 33, 989 (1995)CrossRefGoogle Scholar
  55. 55.
    V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.Y. Mal’kov, V.M. Titov: Chem. Phys. Lett. 222, 343 (1994)CrossRefGoogle Scholar
  56. 56.
    F. Tuinstra, J.L. Koenig: J. Chem. Phys. 53, 1126 (1970)CrossRefGoogle Scholar
  57. 57.
    A. Fourdeux, R. Perret, W. Ruland: dgfsdhf in The International Conference on Carbon Fibers and Their Composites, p. 57. The Plastics Institute, 1971Google Scholar
  58. 58.
    J.C. Bokros: in P.L. Walker,. (ed.) Chemistry and Physics of Carbon, Vol. 5, p. 1. Marcel Dekker, Inc., New York, 1969Google Scholar
  59. 59.
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Nature 381, 678 (1996)CrossRefGoogle Scholar
  60. 60.
    M.J. Matthews, M.S. Dresselhaus, G. Dresselhaus, M. Endo, Y. Nishimura, T. Hiraoka, N. Tamaki: Appl. Phys. Lett. 69, 430–432 (1996)CrossRefGoogle Scholar
  61. 61.
    M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. Kroto, A. Sarkar: Carbon 33, 873 (1995)CrossRefGoogle Scholar
  62. 62.
    J.R Dahn: Phys. Rev. B 44, 9170 (1991)CrossRefGoogle Scholar
  63. 63.
    A.M. Wilson, B.M. Way, J.R. Dahn: J. Appl. Phys. 77, 2363 (1995)CrossRefGoogle Scholar
  64. 64.
    J. Conard, V.A. Nalimova, D. Guerard: Mol. Cryst. Liq. Cryst. 245, 25–30 (1994)CrossRefGoogle Scholar
  65. 65.
    S. Megahed and B. Scrosati: J. Power Sources 51, 79 (1994)CrossRefGoogle Scholar
  66. 66.
    M.J. Matthews, X.X. Bi, M.S. Dresselhaus, M. Endo, T. Takahashi: Appl. Phys. Lett. 68, 1078–1080 (1996)CrossRefGoogle Scholar
  67. 67.
    M.J. Matthews, M.S. Dresselhaus, N. Kobayashi, T. Enoki, M. Endo, T. Takahashi: Appi. Phys. Lett. 69, 2042–2044 (1996)CrossRefGoogle Scholar
  68. 68.
    M.S. Dresselhaus, A.W.P. Fung, A.M. Rao, S.L. di Vittorio, K. Kuriyama, G. Dresselhaus, M. Endo: Carbon 30, 1065–1073 (1992)CrossRefGoogle Scholar
  69. 69.
    R.W. Pekala, C.T. Alviso: in Novel Forms of Carbon, Vol. 270, pp. 3–14, C.L. Renschler, J.J. Pouch, D.M. Cox (eds.) Materials Research Society, Pittsburgh, PA, 1992Google Scholar
  70. 70.
    A.W.P. Fung, Z.H. Wang, K. Lu, M.S. Dresselhaus, R.W. Pekala: J. Mater. Res. 8, 1875 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. S. Dresselhaus

There are no affiliations available

Personalised recommendations