Skip to main content

Insecticides with Novel Modes of Action: An Overview

  • Chapter
Insecticides with Novel Modes of Action

Part of the book series: Applied Agriculture ((APPLAGRIC))

Abstract

Conventional insecticides such as chlorinated hydrocarbons, organophosphates, carbamates and pyrethroids were successful in controlling insect pests during the past five decades, minimizing thereby losses in agricultural yields. Unfortunately, many of these chemicals are harmful to man and beneficial organisms and cause ecological disturbances. Although considerable efforts have been made to minimize the adverse environmental impact of pesticides and to maximize food production and health of the human population and domestic animals, there is today a great demand for safer and more selective insecticides affecting specifically harmful pests, while sparing beneficial insect species and other organisms. Furthermore, the rapidly developing resistance to conventional insecticides provides the impetus to study new alternatives and more ecologically acceptable methods of insect control as part of integrated pest management (IPM) programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abies JR, West RP, Shepard M (1975) Response of the house fly and its parasitoids to dimilin (TH-6040). J Econ Entomol 68: 622–624

    Google Scholar 

  • Albrecht CP, Sherman M (1987) Lethal and sublethal effects of avermectin Bl on three fruit fly species (Diptera: Tephritidae). J Econ Entomol 80: 344–347

    CAS  Google Scholar 

  • Anderson DW, Elliott RH (1982) Efficacy of diflubenzuron against the codling moth.

    Google Scholar 

  • Laspeyresia pomonella (Lepidoptera: Olethrentidae) and impact on orchard mites. Can Entonol 114: 733–737

    Google Scholar 

  • Anonymous (1987) Applaud, a new pesticide (insect growth regulator): technical information. Nihon Nohyaku, Tokyo

    Google Scholar 

  • Anonymous (1989) Polo (diaphenthiuron, CGA 106630), Technical Data Sheet. Ciba-Geigy, Basle, pp 1–18

    Google Scholar 

  • Apperson CS, Schaefer CH, Colwell AE, Werner GH, Anderson NL, Dupras EF Jr, Longanecker DR (1978) Effect of diflubenzuron on Chaoborus astictopus and nontarget organisms and persistence of diflubenzuron in lentil habitat. J Econ Entomol 71: 521–527

    CAS  Google Scholar 

  • Arambourg Y, Pralavario R, Dolbeau C (1977) Premières observations sur li’action du diflubenzuron (PH 6040) sur la fecondité, la longevité et la viabilitè des oeufs de Ceratitis capitata Wield. (Dipt Trypetidae). Rev Zool Agric Pathol Veg 76: 118–126

    CAS  Google Scholar 

  • Arena JP (1994) Expression of Caenorhabditis elegans mRNA in Xenophus oocytes: a model system to study the mechanism of action of avermectins. Parasitol Today 10: 35–37

    Article  PubMed  CAS  Google Scholar 

  • Arena JP, Liu KK, Paress PS, Schaeffer JM, Cully DF (1992) Expression of a glutamate — activated chloride current in Xenophus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Mol Brain Res 15: 339–348

    Article  PubMed  CAS  Google Scholar 

  • Ascher KRS (1993) Non-conventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Arch Insect Biochem Physiol 22: 433–449

    Article  CAS  Google Scholar 

  • Ascher KRS, Nemny NE (1974) The ovicidal effect of PH 60–40 [1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)-urea] in Spodoptera littoralis Boisd. Phytoparasitica 2: 131–133

    Article  CAS  Google Scholar 

  • Baum D, Yablonski S, Ishaaya I (1990) Biological mode of action of benzoylphenyl ureas on the grapevine moth Lobesia botrana Den & Schiff (Lepidoptera: Tortricidae). Abstr 7th Int Congr Pestic Chem (IUPAC), Hamburg, vol 1, p 375

    Google Scholar 

  • Baum D, Yablonski S, Ishaaya I (1992) The ovicidal effect of some benzoylphenyl ureas on the grape berry moth Lobesia botrana. Phytoparasitica 20: 83

    Article  Google Scholar 

  • Becher HM, Becker P, Prokic-Immel R, Wirtz W (1983) CME, a new chitin synthesis inhibiting insecticide. Brighton Crop Prot Conf, vol 1; pp. 408–415

    CAS  Google Scholar 

  • Bergamasco R, Horn DHS (1980) The biological activities of ecdysteroids and ecdysteroid analogues. In: Hoffman JA (ed) Progress in ecdysone research. Elsevier, Amsterdam, pp 299–324

    Google Scholar 

  • Broadbent AB, Pree DJ (1984) Effects of diflubenzuron and BAY SIR 8514 on beneficial insects associated with peach. Environ Entomol 13: 133–136

    CAS  Google Scholar 

  • Brown JJ (1994) Effects of a nonsteroidal ecdysone agonist, tebufenozide, on host/parasitoid interaction. Arch Insect Biochem Physiol 26: 235–248

    Article  CAS  Google Scholar 

  • Chandler LD, Pair SD, Harrison WE (1992) RH-5992, a new insect growth regulator active against corn earworm and fall armyworm (Lepidoptera: Noctuidae). J Econ Entomol 85: 1099–1103

    CAS  Google Scholar 

  • Cohen E (1985) Chitin synthetase activity and inhibition in different insect microsomal preparations. Experientia 41: 470–472

    Article  CAS  Google Scholar 

  • Cohen E, Casida JE (1980) Inhibition of Tribolium gut synthetase. Pestic Biochem Physiol 13: 129–136

    Article  CAS  Google Scholar 

  • Cox DL, Knight AL, Biddinger DG, Lasota JA, Pikounis B, Hull LA, Dybas RA (1995) Toxicity and field efficacy of avermectins against codling moth (Lepidoptera: Tortricidae) on apples. J Econ Entomol 88: 708–715

    CAS  Google Scholar 

  • De Cock A, Ishaaya I, Degheele D, Veierov D (1990) Vapor toxicity and concentration-dependent persistence of buprofezin applied to cotton foliage for controlling the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 83: 1254–1260

    Google Scholar 

  • De Cock A, Ishaaya I, Van De Veire M, Degheele D (1995) Response of buprofezin-susceptible and -resistant strains of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) to pyriproxyfen and diafenthiuron. J Econ Entomol 88: 763–767

    Google Scholar 

  • DeLoach JR, Meola SM, Mayer RT, Thompson JM (1981) Inhibition of DNA synthesis by diflubenzuron in pupae of the stable fly Stomoxys calcitrans (L.). Pestic Biochem Physiol 15: 172–180

    Article  CAS  Google Scholar 

  • Deng Y, Casida JE (1992) House fly head GABA-gated chloride channel: toxicologically relevant binding site for avermectins coupled to site for ethynyl-bicycloorthobenzoate. Pestic Biochem Physiol 43: 116–122

    Article  CAS  Google Scholar 

  • Devine G, Harling Z, Scarr AWS, Devonshire A (1996) Lethal and sublethal effects of imidacloprid on nicotine-tolecant Myzus nicotianae and Myzus Persicae. Pestic Sci 48: 57–62

    Article  CAS  Google Scholar 

  • Dorn S, Frischknecht ML, Martinez V, Zurflüh R, Fischer U (1981) A novel non-neurotoxic insecticide with a broad activity. Z Pflanzenkr Pflanzenschutz 88: 269–275

    CAS  Google Scholar 

  • Dybas RA (1989) Abamectin use in crop protection. In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin Heidelberg, New York, pp 287–310

    Chapter  Google Scholar 

  • Elbert A, Becker B, Hartwig J, Erdalen C (1991) Imidacloprid—a new systemic insecticide. Pflanzenschutz-Nachr 44: 113–136

    CAS  Google Scholar 

  • Ely J (1993) The engineering of plants to express Bacillus thuringiensis δ-endotoxins. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thurinjfiensis, an environmental biopesticide: theory and practice. John Wiley, Chichester, pp 105–124

    Google Scholar 

  • Fischer MH, Mrozik H (1989) Chemistry. In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin Heidelberg, New York, p 1–23

    Chapter  Google Scholar 

  • Fischhoff DA, Bowdisch KS, Perlak FJ, Marrone PG, McCormick SH, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Biol Technology 5: 807–813

    Article  CAS  Google Scholar 

  • Flückiger CR, Kristinsson H, Senn R, Rindlisbacher A, Buholzer H, Voss G (1992a) CGA 215′944—a novel agent to control aphids and whiteflies. Brighton Crop Prot Conf—Pests and diseases, vol 1; pp 43–50

    Google Scholar 

  • Fückiger CR, Senn R, Buholzer H (1992b) CGA 215′944—opportunities for use in vegetables. Brighton Crop Prot Conf—Pests and diseases, vol 3, pp 1187–1192

    Google Scholar 

  • Garrido A, Beitia F, Gruenholz P (1984) Effects of PP 618 on immature stages of Encarsia formosa and Cales noaki (Hymenoptera: Aphelinidae). Brighton Crop Prot Conf—Pests and diseases, pp 305–310

    Google Scholar 

  • Gerling D, Sinai P (1994) Buprofezin effects on two parasitoid species of whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87: 842–846

    CAS  Google Scholar 

  • Gilbert LI, Bollenbacher WE, Goodman W, Smith SL, Agui N, Granger N, Sedlak BJ (198C) Hormones controlling insect metamorphosis. Recent Prog Horm Res 36: 401–449

    Google Scholar 

  • Gill SS, Cowles EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37: 615–636

    Article  PubMed  CAS  Google Scholar 

  • Granett J, Weseloh RM (1975) Dimilin toxicity to the gypsy moth larval parasitoid, Apanteles melanoscelus. J Econ Entomol 68: 577–580

    CAS  Google Scholar 

  • Grosscurt AC (1978) Effect of diflubenzuron on mechanical penetrability, chitin formation, and structure of the elytra of Leptinotarsa decemlineata. J Insect Physiol 24: 827–831

    Article  CAS  Google Scholar 

  • Grosscurt AC, Anderson SO (1980) Effect of diflubenzuron on some chemical and mechanical properties of the elytra of Leptinotarsa decemlineata. Proc K Ned Akad Wet 83C: 143–150

    Google Scholar 

  • Haga T, Tobi T, Koyanagi T, Nishiyama R (1982) Structure activity relationships of a series of benzoyl-pyridyloxyphenyl-urea derivatives. Abstr, 5th Int Congr Pestic Chem (IUPAC), August 1982, Kyoto, p IId-7

    Google Scholar 

  • Hajjar NP, Casida JE (1979) Structure activity relationships of benzoylphenyl ureas as toxicants and chitin synthesis inhibitors in Oncopeltus fasciatus. Pestic Biochem Physiol 11: 33–45

    Article  CAS  Google Scholar 

  • Heller JJ, Mattioda H, Klein E, Sagenmüller A (1992) Field evaluation of RH-5992 on lepidopterous pests in Europe. Brighton Crop Prot Conf—Pests and diseases Nov 1992, vol 1, pp 59–66

    Google Scholar 

  • Henrick CA, Willy WE, Staal GB (1976) Insect juvenile hormone activity of alkyl (2E, 4E)-3, 7, 11-trimethyl-2, 4-dodecadienoates. Variations in the ester function and the carbon chain. J Agric Food Chem 24: 207–218

    Article  PubMed  CAS  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53: 242–255

    PubMed  Google Scholar 

  • Holst H (1975) Die fertilit%otsbeeinflussende Wirkung des neuen Insektizids DDD 60–40 bei Epilacbna varivestis Muls. (Col.: Coccinellidae), und Leptinotarsa decemlineata Say (Col.: Chrysomelidae). Z Pflanzenkr Pflanzenschutz 82: 1–7

    Google Scholar 

  • Horn DHS, Galbraith MN, Kelly BA, Kinnear JF, Martin MD, Middleton EJ, Virgonia CTF (1981) Moulting hormones L III. The synthesis and biological activity of some ecdysone analogues. Aust J Chem 34: 2607–2618

    Article  Google Scholar 

  • Horowitz AR, Ishaaya I (1992) Susceptibility of the sweetpotato whitefly (Homoptera: Aleyrodidae) to buprofezin during the cotton season. J Econ Entomol 85: 318–324

    CAS  Google Scholar 

  • Horowitz AR, Ishaaya I (1994) Managing resistance to IGRs in the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87: 866–871

    CAS  Google Scholar 

  • Horowitz AR, Ishaaya I (1996) Chemical control of Bemisia tabaci—management and application. In: Gerling G, Mayer RT (eds) Bemisia 1995: taxonomy, biology, damage, control and management. Intercept, Andover, pp 537–556

    Google Scholar 

  • Horowitz AR, Klein M, Yablonski S, Ishaaya I (1992) Evaluation of banzoylphenyl ureas for controlling the spiny bollworm, Barias insulana (Boisd.) in cotton. Crop Prot. 11: 465–469

    Article  CAS  Google Scholar 

  • Horowitz AR, Forer G, Ishaaya I (1994) Managing resistance in Bemisia tabaci in Israel with emphasis on cotton. Pestic Sci 42: 113–122

    Article  CAS  Google Scholar 

  • Horowitz AR, Mendelson Z, Ishaaya I (1997) Effect of abamectin mixed with mineral oil on the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 90: 349–353

    CAS  Google Scholar 

  • Hoy MA, Cave FE (1985) Laboratory evaluation of avermectin as a selective acaricide for use with Metasciulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Exp Appl Acarol 1: 139–152

    Article  CAS  Google Scholar 

  • Ishaaya I (1990) Benzoylphenyl ureas and other selective control agents—mechanism and application. In: Casida JE (ed) Pesticides and alternatives. Elsevier, Amsterdam, pp 365–376

    Google Scholar 

  • Ishaaya I (1992) Selective insect control agents—mechanism and application. In: Otto D, Weber B (eds) Insecticides: mechanism of action and resistance. Intercept, Andover, pp 127–133

    Google Scholar 

  • Ishaaya I, Ascher KRS (1977) Effect of diflubenzuron on growth and carbohydrate hydrolases of Tribolium castaneum. Phytoparasitica 5: 149–158

    Article  CAS  Google Scholar 

  • Ishaaya I, Casida JE (1974) Dietary TH 6040 alters cuticle composition and enzyme activity of house fly larval cuticle. Pestic Biochem Physiol 4: 484–490

    Article  CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1992) Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entornol 85: 2113–2117

    CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1995) Pyriproxyfen, a novel insect growth regulator for controlling whiteflies: mechanism and resistance management. Pestic Sci 43: 227–232

    Article  CAS  Google Scholar 

  • Ishaaya I, Klein M (1990) Response of susceptible laboratory and resistant field strains of Spodoptem littoralis (Lepidoptera: Noctuidae) to teflubenzuron. J Econ Entomol 83: 59–62

    CAS  Google Scholar 

  • Ishaaya I, Navon A, Gurevitz E (1986) Comparative toxicity of chlorfluazuron (IKI-7899) and Cypermethrin to Spodoptem littomlis, Lobesia botrana and Drosophila melanogaster. Crop Prot 5: 385–388

    Article  CAS  Google Scholar 

  • Ishaaya I, Mendelson Z, Melamed-Majar V (1988) Effect of buprofezin on embryogenesis and progeny formation of sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 81: 781–784

    CAS  Google Scholar 

  • Ishaaya I, Blumberg D, Yarom I (1989) Buprofezin—a novel IGR for controlling whiteflies and scale insects. Meded Fac Landbouwwet Rijksuniv Gent 54: 1003–1008

    CAS  Google Scholar 

  • Ishaaya I, Mendelson Z, Horowitz AR (1993) Toxicity and growth suppression exerted by diafenthiuron in the sweetpotato whitefly Bemisia tabaci. Phytoparasitica 21: 199–204

    Article  CAS  Google Scholar 

  • Ishaaya I, De Cock A, Degheele D (1994) Pyriproxyfen, a potent suppresser of egg hatch and adult formation of the greenhouse whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87: 1185–1189

    CAS  Google Scholar 

  • Ishaaya I, Yablonski S, Horowitz AR (1995) Comparative toxicity of two ecdysteroid agonists, RH-2485 and RH-5992, on susceptible and pyrethroid-resistant strains of the Egyptian cotton leafworm, Spodoptera littoralis. Phytoparasitica 23: 139–145

    Article  CAS  Google Scholar 

  • Ishaaya I, Yablonski S, Mendelson Z, Mansour Y, Horowitz AR (1996) Novaluron (MCW-275), a novel benzoylphenyl urea, suppressing developing stages of lepidopteran, whitefly and leafminer pests. Brighton Crop Prot Conf—Pests and diseases Nov 1996, 1013–1020

    Google Scholar 

  • Itaya N (1987) Insect juvenile hormone analogue as an insect growth regulator. Sumitomo Pyrethroid World 8: 2–4

    Google Scholar 

  • Izawa Y, Uchida M, Sugimoto T, Asai T (1985) Inhibition of chitin biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens StÃ¥l. Pestic Biochem Physiol 24: 343–347

    Article  CAS  Google Scholar 

  • Jacobson M (Ed) (1988) Focus on phytochemical pesticides: the neem tree, vol 1. CRC Press, Boca Raton

    Google Scholar 

  • Jones D, Snyder M, Granett J (1983) Can insecticides be integrated with biological control agents of Trichoplusia ni in celery? Entomol Exp Appl 33: 290–296

    Article  CAS  Google Scholar 

  • Kadir HA, Knowles CO (1991a) Toxicological studies of the thiourea diafenthiuron in diamondback moths (Lepidoptera: Yponomeutidae), two-spotted spider mites (Acari: Tetranychidae), and bulb mite (Acari: Acaridae). J Econ Entomol 84: 780–784

    CAS  Google Scholar 

  • Kadir HA, Knowles CO (1991b) Inhibition of ATP dephosphorylation by acaricides with emphasis on the anti-ATPase activity of the carbodiimide metabolite of diafenthiuron. J Econ Entomol 84: 801–805

    PubMed  CAS  Google Scholar 

  • Kanno H, Ikeda K, Asai T, Maekawa S (1981) 2-tert-butylimino-3-isopropyl-5-phenyl-perhydro-1, 3, 5-thiodiazin-4-one (NNI 750), a new insecticide. Brighton Crop Prot Conf, vol 1. pp 56–69

    Google Scholar 

  • Kawada H (1988) An insect growth regulator against cockroaches. Sumitomo Pyrethroid World 11: 2–4

    Google Scholar 

  • Koehler PG, Patterson RJ (1991) Incorporation of pyriproxyfen in a German cockroach (Dictyoptera: Blattellidae) management program. J Econ Entomol 84: 917–921

    PubMed  CAS  Google Scholar 

  • Koolman J, Karlson P (1985) Regulation of ecdysteroid titer: degradation. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, Biochemistry and pharmacology, vol 7. Pergamon Press, Oxford, pp 343–361

    Google Scholar 

  • Langley P (1990) Control of the tsetse fly using a juvenile hormone mimic, pyriproxyfen. Sumitomo Pyrethroid World 15: 2–5

    Google Scholar 

  • Lasota JA, Dybas RA (1991) Avermectin, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36: 91–117

    Article  PubMed  CAS  Google Scholar 

  • Leicht W (1993) Imidacloprid—a chloronicotinyl insecticide. Pestic Outlook 4: 17–21

    CAS  Google Scholar 

  • Masner P, Angst M, Dorn S (1987) Fenoxycarb, an insect growth regulator with juvenile hormone activity: a candidate for Heliothis virescens (F.) control on cotton. Pestic Sci 18: 89–94

    Article  CAS  Google Scholar 

  • Mauchamp B, Perrineau O (1987) Chitin biosynthesis after treatment with benzoylphenyl ureas. In: Wright JE, Retnakaran A (eds) Chitin and benzoylphenyl ureas. Dr W Junk, Dordrecht, pp 101–109

    Chapter  Google Scholar 

  • Mayer RT, Chen AC, DeLoach JR (1981) Chitin synthesis inhibiting insect growth regulators do not inhibit chitin synthase. Experientia 37: 337–338

    Article  CAS  Google Scholar 

  • Meadows MP (1993) Bacillus thuringiensis in the environment: ecology and risk assessment. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. John Wiley, Chichester, pp 193–220

    Google Scholar 

  • Mellin TN, Busch RD, Wang CC (1983) Postsynaptic inhibition of invertebrate neuromuscular transmission by avermectin Bla. Neuropharmacology 22: 89–96

    Article  PubMed  CAS  Google Scholar 

  • Mendel Z, Blumberg D, Ishaaya I (1994) Effect of some insect growth regulators on natural enemies of scale insects (Homoptera: Coccoidea). Entomophaga 39: 199–209

    Article  CAS  Google Scholar 

  • Mitlin N, Wiygul G, Haynes JW (1977) Inhibition of DNA synthesis in boll weevils (Anthonomus grandis Boheman) sterilized by dimilin. Pestic Biochem Physiol 7: 559–563

    Article  CAS  Google Scholar 

  • Mizell RF, Schiffhaner DE, Taylor JL (1986) Mortality of Tetranychus urticae Koch (Acari: Tetranychidae) from abamectin residues: effects of host plant, light and surfactants. J Econ Entomol 21: 329–337

    CAS  Google Scholar 

  • Monthèan C, Potter DE (1992) Effects of RH-5849, a novel insect growth regulator, on Japanese beetle (Coleoptera: Scarabaeidae) and fall armyworm (Lepidoptera: Noctuidae) in turfgrass. J Econ Entomol 85: 507–513

    Google Scholar 

  • Mulder R, Gijswijk MT (1973) The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition. Pestic Sci 4: 737–745

    Article  CAS  Google Scholar 

  • Mulla MS, Majori G, Darwazeh HA (1975) Effects of the insect growth regulator Dimilin or TH 6040 on mosquitoes and some non-target organisms. Mosq News 35: 211–216

    CAS  Google Scholar 

  • Nagata T (1986) Timing of buprofezin application for control of the brown planthopper, Nilaparvata lugens Stil. (Homoptera: Delphacidae). Appl Entomol Zool 21: 357–362

    CAS  Google Scholar 

  • National Research Council (1992) Neem, a tree for solving global problems. National Academy Press, Washington, DC, 139 pp

    Google Scholar 

  • Navon A (1993) Control of lepidopteran pests with Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey MJ, Hidds S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. 6. John Wiley, Chichester, pp 125–146

    Google Scholar 

  • Navon A, Klein M, Braun S (1990) Bacillus thuringiensis potency bioassays against Heliothis armígera, Barias insulana and Spodoptera littoralis larvae based on standardized diets. J Invertebr Pathol 55: 387–393

    Article  PubMed  CAS  Google Scholar 

  • Neuen R (1995) Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic Sci 44: 145–153

    Article  Google Scholar 

  • Peleg BA (1988) Effect of a new phenoxy juvenile hormone analog on California red scale (Homoptera: Diaspididae), Florida wax scale (Homoptera: Coccidae) and the ectoparasite Aphytis holoxanthus DeBache (Hymenoptera: Aphelinidae). J Econ Entomol 81: 88–92

    CAS  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Bio/Technology 8: 939–943

    Article  PubMed  CAS  Google Scholar 

  • Post LC, de Jong BJ, Vincent WR (1974) 1-(2,6-disubstituted benzoyl)-3-phenylurea insecticides: inhibitors of chitin synthesis. Pestic Biochem Physiol 4: 473–483

    Article  CAS  Google Scholar 

  • Retnakaran A, Wright JE (1987) Control of insect pests with benzoylphenyl ureas. In: Wright JE, Retnakaran A (eds) Chitin and benzoylphenyl ureas. Dr W Junk, Dordrecht, pp 205–282

    Chapter  Google Scholar 

  • Retnakaran A, Granett J, Ennis T (1985) Insect growth regulators. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 529–601

    Google Scholar 

  • Robbins WE, Kaplanis JN, Thompson MJ, Shortino TJ, Joyner SC (1970) Ecdysone and synthetic analogs: molting hormone activity and inhibitive effects on insect growth, metamorphosis and reproduction. Steroids 16: 105–125

    Article  PubMed  CAS  Google Scholar 

  • Rohrer SP, Birzin ET, Costa SD, Arena JP, Hayes EC, Schaeffer JM (1995) Identification of neuron-specific ivermectin binding sites in Drosophila melanogaster and Schistocerca americana. Insect Biochem Mol Biol 25: 11–17

    Article  PubMed  CAS  Google Scholar 

  • Ruder FJ, Benson JA, Kayser H (1992) The mode of action of the insecticide/acaricide diafenthiuron. In: Otto D, Weber B (eds) Insecticides: mechanism of action and resistance. Intercept, Andover, pp 263–276

    Google Scholar 

  • Sarasua MJ, Santiago-Alvarez C (1983) Effect of diflubenzuron on the fecundity of Ceratitis capitata. Entomol Exp Appl 33: 223–225

    Article  CAS  Google Scholar 

  • Sbragia R, Bisarbi-Ershadi B, Rigterink RH (1983) XRD-473, a new acylurea insecticide effective against Heliothis. Brighton Crop Prot Conf, vol 1. pp 417–424

    CAS  Google Scholar 

  • Schaeffer JM, Haines HW (1989) Avermectin binding in Caenorhabditis eleganr. a two-state model for the avermectin binding site. Biochem Pharmacol 38: 2329–2338

    Article  PubMed  CAS  Google Scholar 

  • Schmutterer H (ed) (1995) Neem tree—source of unique natural products for integrated pest management, medicine industry and other purposes. VCH, Weinheim, 696 pp

    Google Scholar 

  • Schooley DA, Baker FC (1985) Juvenile hormone biosynthesis. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. vol 17. Pergamon Press, Oxford, pp 363–389

    Google Scholar 

  • Schwinger M, Harrewijn P, Kayser H (1994) Effect of pymetrozine (CGA 215′944), a novel aphicide on feeding behavior of aphids. Proc 8th IUPAC Int Congr Pestic Chem, Washington, DC, vol 1. 230

    Google Scholar 

  • Shepard M, Kissam JB (1981) Integrated control of house flies on poultry farms: treatment of house fly resting surfaces with diflubenzuron plus releases of the parasitoids, Muscidifurax raptor. J GA Entomol Soc 16: 222–227

    CAS  Google Scholar 

  • Silhacek DL, Oberlander H, Procheron P (1990) Action of RH-5849, a non-steroidal ecdysteroid mimic, on Plodia interpunctella (Hübner) in vivo and in vitro. Arch Insect Biochem Physiol 15: 201–212

    Article  CAS  Google Scholar 

  • Slama K, Romanuk M, Sorm F (1974) Insect hormones and bioanalogues. Springer, Berlin Heidelberg, New York

    Book  Google Scholar 

  • Smagghe G, Degheele D (1992a) Effects of RH-5849, the first nonsteroidal ecdysteroid agonist, on larvae of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 21: 119–128

    Article  CAS  Google Scholar 

  • Smagghe G, Degheele D (1992b) Effect of the nonsteroidal ecdysteroid agonist RH-5849 on reproduction of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Parasitica 48: 23–29

    Google Scholar 

  • Smagghe G, Degheele D (1993) Metabolism, pharmacokinetics, and toxicity of the first nonsteroidal ecdysteroid agonist RH-5849 to Spodoptera exempta (Walker), Spodoptera exigua (Hübner) and Leptinotarsa decemlineata (Say). Pestic Biochem Physiol 46: 149–160

    Article  CAS  Google Scholar 

  • Smagghe G, Degheele D (1994a) Action of a novel nonsteroidal ecdysteroid mimic, tebufenozide (RH-5992), on insects of different orders. Pestic Sci 42: 85–92

    Article  CAS  Google Scholar 

  • Smagghe G, Degheele D (1994b) Action of the nonsteroidal ecdysteroid mimic RH-5849 on larval development and adult reproduction of insects of different orders. Invertebr Reprod Dev 25: 227–236

    Article  CAS  Google Scholar 

  • Smagghe G, Degheele D (1995) Selectivity of nonsteroidal ecdysteroid agonists RH-5849 and RH-5992 to nymphs and adults of the predatory soldier bugs, Podisus nigrispinus and Podisus maculiventris (Hemiptera: Pentatomidae). J Econ Entomol 88: 40–45

    CAS  Google Scholar 

  • Soltani N, Besson MT, Delachambre J (1984) Effect of diflubenzuron on the pupal-adult development of Tenebrio molitor L. (Coleoptera: Tenebrionidae): growth and development, cuticle secretion, epidermal cell density and DNA synthesis. Pestic Biochem Physiol 21: 256–264

    Article  CAS  Google Scholar 

  • Staal GB (1982) Insect control with growth regulators interfering with the endocrine system. Entomol Exp Appl 31: 15–23

    Article  CAS  Google Scholar 

  • Steinemann A, Stamm E, Frei B (1990) Chemodynamics in research and development of new plant protection agents. Pestic Outlook 1(3): 3–7

    CAS  Google Scholar 

  • Streibert HP, Drabek J, Rindlisbacher A (1988) CGA 106630—a new type of acaricide/insecticide for the control of the sucking pest complex in cotton and other crops. Brighton Crop Prot Conf—Pests and diseases, vol 1. pp 25–33

    Google Scholar 

  • Thompson WT (1989) Agricultural chemicals, book 1. Thompson, Fresno, pp 64–70

    Google Scholar 

  • Tomizawa M, Otsuka H, Miyamoto T, Eldefrawi ME, Yamamoto I (1995a) Pharmacological characteristics of insect nicotinic acetylcholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids. J Pestic Sci 20: 57–64

    Article  CAS  Google Scholar 

  • Tomizawa M, Otsuka H, Miyamoto T, Yamamoto I (1995b) Pharmacological effects of imidacloprid and its related compounds on the nicotinic acetylcholine receptor with its ion channel from the Torpedo electric organ. J Pestic Sci 20: 49–56

    Article  CAS  Google Scholar 

  • Van de Veire M, Degheele D (1993) Side effects of diafenthiuron on the greenhouse whitefly parasitoid Encarsia formosa and the predatory bug Orius niger and its possible use in IPM in greenhouse vegetables. Meded Fac Landbouwwet Rijksuniv Gent 53: 509–514

    Google Scholar 

  • Van Eck WH (1979) Mode of action of two benzoylphenyl ureas as inhibitors of chitin synthesis in insects. Insect Biochem 9: 295–300

    Article  Google Scholar 

  • Williams CM (1967) Third-generation pesticides. Sci Am 217: 13–17

    Article  PubMed  CAS  Google Scholar 

  • Wilson D, Anema BP (1988) Development of buprofezin for control of whitefly Trialeurodes vaporariorum and Bemisia tabaci on glasshouse crops in the Netherlands and the UK. Brighton Crop Prot Conf—Pests and diseases, pp 175–180

    Google Scholar 

  • Wing KD (1988) RH-5849, a nonsteroidal ecdysone agonist: effects on a Drosophila cell line. Science, Wash D C 241: 467–469

    Article  CAS  Google Scholar 

  • Wing KD, Slawecki RA, Carlson GR (1988) RH-5849, a nonsteroidal ecdysone agonist: effects on larval lepidoptera. Science, Wash D C 241: 470–472

    Article  CAS  Google Scholar 

  • Wislocki PG, Grosso LS, Dybas RA (1989) Environmental aspects of abamectin use in crop protection. In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin Heidelberg, New York, pp 182–200

    Chapter  Google Scholar 

  • Wright JE, Harris RL (1976) Ovicidal activity of Thompson-Hayward TH 6040 in the stable fly and horn fly after surface contact by adults. J Econ Entomol 69: 728–730

    PubMed  CAS  Google Scholar 

  • Wright DJ, Loy A, Green ASJ, Dybas RA (1985) The translaminar activity of abamectin (MK-936) against mites and aphids. Meded Fac Landbouwwet Rijksuniv Gent 50: 633–637

    CAS  Google Scholar 

  • Yamamoto I, Yabuta G, Tomizawa M, Saito T, Miyamoto T, Kagabu S (1995) Molecular mechanism of selective toxicity of nicotinoids and neonicotinoids. J Pestic Sci 20: 33–40

    Article  CAS  Google Scholar 

  • Yarom I, Blumberg D, Ishaaya I (1988) Effect of buprofezin on California red scale (Homoptera: Diaspididae) and mediterranean black scale (Homoptera: Coccidae). J Econ Entomol 81: 1581–1585

    CAS  Google Scholar 

  • Yasui M, Fukada M, Maekawa S (1985) Effect of buprofezin on different developmental stages of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Appl Entomol Zool 20: 340–347

    CAS  Google Scholar 

  • Yasui M, Fukada M, Maekawa S (1987) Effect of buprofezin on reproduction of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Appl Entomol Zool 22: 266–271

    CAS  Google Scholar 

  • Zhang Z, Sanderson JP (1990) Relative toxicity of abamectin to the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) and the two spotted spider mite (Acari: Tetranychidae). J Econ Entomol 83: 1783–1790

    CAS  Google Scholar 

  • Zimowska G, Mikolajczyk P, Silhacek DL, Oberlander H (1994) Chitin synthesis in Spodoptera frugiperda wing imaginai discs. II. Selective action of chlorfluazuron on wheat germ agglutinin binding and cuticle ultrastructure. Arch Insect Biochem Physiol 27: 89–108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishaaya, I., Horowitz, A.R. (1998). Insecticides with Novel Modes of Action: An Overview. In: Ishaaya, I., Degheele, D. (eds) Insecticides with Novel Modes of Action. Applied Agriculture. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03565-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03565-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08314-3

  • Online ISBN: 978-3-662-03565-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics