Insecticides with Novel Modes of Action: An Overview

  • I. Ishaaya
  • A. R. Horowitz
Part of the Applied Agriculture book series (APPLAGRIC)


Conventional insecticides such as chlorinated hydrocarbons, organophosphates, carbamates and pyrethroids were successful in controlling insect pests during the past five decades, minimizing thereby losses in agricultural yields. Unfortunately, many of these chemicals are harmful to man and beneficial organisms and cause ecological disturbances. Although considerable efforts have been made to minimize the adverse environmental impact of pesticides and to maximize food production and health of the human population and domestic animals, there is today a great demand for safer and more selective insecticides affecting specifically harmful pests, while sparing beneficial insect species and other organisms. Furthermore, the rapidly developing resistance to conventional insecticides provides the impetus to study new alternatives and more ecologically acceptable methods of insect control as part of integrated pest management (IPM) programs.


Juvenile Hormone Foliar Application Lady Beetle Insect Growth Regulator Cotton Seedling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abies JR, West RP, Shepard M (1975) Response of the house fly and its parasitoids to dimilin (TH-6040). J Econ Entomol 68: 622–624Google Scholar
  2. Albrecht CP, Sherman M (1987) Lethal and sublethal effects of avermectin Bl on three fruit fly species (Diptera: Tephritidae). J Econ Entomol 80: 344–347Google Scholar
  3. Anderson DW, Elliott RH (1982) Efficacy of diflubenzuron against the codling moth.Google Scholar
  4. Laspeyresia pomonella (Lepidoptera: Olethrentidae) and impact on orchard mites. Can Entonol 114: 733–737Google Scholar
  5. Anonymous (1987) Applaud, a new pesticide (insect growth regulator): technical information. Nihon Nohyaku, TokyoGoogle Scholar
  6. Anonymous (1989) Polo (diaphenthiuron, CGA 106630), Technical Data Sheet. Ciba-Geigy, Basle, pp 1–18Google Scholar
  7. Apperson CS, Schaefer CH, Colwell AE, Werner GH, Anderson NL, Dupras EF Jr, Longanecker DR (1978) Effect of diflubenzuron on Chaoborus astictopus and nontarget organisms and persistence of diflubenzuron in lentil habitat. J Econ Entomol 71: 521–527Google Scholar
  8. Arambourg Y, Pralavario R, Dolbeau C (1977) Premières observations sur li’action du diflubenzuron (PH 6040) sur la fecondité, la longevité et la viabilitè des oeufs de Ceratitis capitata Wield. (Dipt Trypetidae). Rev Zool Agric Pathol Veg 76: 118–126Google Scholar
  9. Arena JP (1994) Expression of Caenorhabditis elegans mRNA in Xenophus oocytes: a model system to study the mechanism of action of avermectins. Parasitol Today 10: 35–37PubMedCrossRefGoogle Scholar
  10. Arena JP, Liu KK, Paress PS, Schaeffer JM, Cully DF (1992) Expression of a glutamate — activated chloride current in Xenophus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Mol Brain Res 15: 339–348PubMedCrossRefGoogle Scholar
  11. Ascher KRS (1993) Non-conventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Arch Insect Biochem Physiol 22: 433–449CrossRefGoogle Scholar
  12. Ascher KRS, Nemny NE (1974) The ovicidal effect of PH 60–40 [1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)-urea] in Spodoptera littoralis Boisd. Phytoparasitica 2: 131–133CrossRefGoogle Scholar
  13. Baum D, Yablonski S, Ishaaya I (1990) Biological mode of action of benzoylphenyl ureas on the grapevine moth Lobesia botrana Den & Schiff (Lepidoptera: Tortricidae). Abstr 7th Int Congr Pestic Chem (IUPAC), Hamburg, vol 1, p 375Google Scholar
  14. Baum D, Yablonski S, Ishaaya I (1992) The ovicidal effect of some benzoylphenyl ureas on the grape berry moth Lobesia botrana. Phytoparasitica 20: 83CrossRefGoogle Scholar
  15. Becher HM, Becker P, Prokic-Immel R, Wirtz W (1983) CME, a new chitin synthesis inhibiting insecticide. Brighton Crop Prot Conf, vol 1; pp. 408–415Google Scholar
  16. Bergamasco R, Horn DHS (1980) The biological activities of ecdysteroids and ecdysteroid analogues. In: Hoffman JA (ed) Progress in ecdysone research. Elsevier, Amsterdam, pp 299–324Google Scholar
  17. Broadbent AB, Pree DJ (1984) Effects of diflubenzuron and BAY SIR 8514 on beneficial insects associated with peach. Environ Entomol 13: 133–136Google Scholar
  18. Brown JJ (1994) Effects of a nonsteroidal ecdysone agonist, tebufenozide, on host/parasitoid interaction. Arch Insect Biochem Physiol 26: 235–248CrossRefGoogle Scholar
  19. Chandler LD, Pair SD, Harrison WE (1992) RH-5992, a new insect growth regulator active against corn earworm and fall armyworm (Lepidoptera: Noctuidae). J Econ Entomol 85: 1099–1103Google Scholar
  20. Cohen E (1985) Chitin synthetase activity and inhibition in different insect microsomal preparations. Experientia 41: 470–472CrossRefGoogle Scholar
  21. Cohen E, Casida JE (1980) Inhibition of Tribolium gut synthetase. Pestic Biochem Physiol 13: 129–136CrossRefGoogle Scholar
  22. Cox DL, Knight AL, Biddinger DG, Lasota JA, Pikounis B, Hull LA, Dybas RA (1995) Toxicity and field efficacy of avermectins against codling moth (Lepidoptera: Tortricidae) on apples. J Econ Entomol 88: 708–715Google Scholar
  23. De Cock A, Ishaaya I, Degheele D, Veierov D (1990) Vapor toxicity and concentration-dependent persistence of buprofezin applied to cotton foliage for controlling the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 83: 1254–1260Google Scholar
  24. De Cock A, Ishaaya I, Van De Veire M, Degheele D (1995) Response of buprofezin-susceptible and -resistant strains of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) to pyriproxyfen and diafenthiuron. J Econ Entomol 88: 763–767Google Scholar
  25. DeLoach JR, Meola SM, Mayer RT, Thompson JM (1981) Inhibition of DNA synthesis by diflubenzuron in pupae of the stable fly Stomoxys calcitrans (L.). Pestic Biochem Physiol 15: 172–180CrossRefGoogle Scholar
  26. Deng Y, Casida JE (1992) House fly head GABA-gated chloride channel: toxicologically relevant binding site for avermectins coupled to site for ethynyl-bicycloorthobenzoate. Pestic Biochem Physiol 43: 116–122CrossRefGoogle Scholar
  27. Devine G, Harling Z, Scarr AWS, Devonshire A (1996) Lethal and sublethal effects of imidacloprid on nicotine-tolecant Myzus nicotianae and Myzus Persicae. Pestic Sci 48: 57–62CrossRefGoogle Scholar
  28. Dorn S, Frischknecht ML, Martinez V, Zurflüh R, Fischer U (1981) A novel non-neurotoxic insecticide with a broad activity. Z Pflanzenkr Pflanzenschutz 88: 269–275Google Scholar
  29. Dybas RA (1989) Abamectin use in crop protection. In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin Heidelberg, New York, pp 287–310CrossRefGoogle Scholar
  30. Elbert A, Becker B, Hartwig J, Erdalen C (1991) Imidacloprid—a new systemic insecticide. Pflanzenschutz-Nachr 44: 113–136Google Scholar
  31. Ely J (1993) The engineering of plants to express Bacillus thuringiensis δ-endotoxins. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thurinjfiensis, an environmental biopesticide: theory and practice. John Wiley, Chichester, pp 105–124Google Scholar
  32. Fischer MH, Mrozik H (1989) Chemistry. In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin Heidelberg, New York, p 1–23CrossRefGoogle Scholar
  33. Fischhoff DA, Bowdisch KS, Perlak FJ, Marrone PG, McCormick SH, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Biol Technology 5: 807–813CrossRefGoogle Scholar
  34. Flückiger CR, Kristinsson H, Senn R, Rindlisbacher A, Buholzer H, Voss G (1992a) CGA 215′944—a novel agent to control aphids and whiteflies. Brighton Crop Prot Conf—Pests and diseases, vol 1; pp 43–50Google Scholar
  35. Fückiger CR, Senn R, Buholzer H (1992b) CGA 215′944—opportunities for use in vegetables. Brighton Crop Prot Conf—Pests and diseases, vol 3, pp 1187–1192Google Scholar
  36. Garrido A, Beitia F, Gruenholz P (1984) Effects of PP 618 on immature stages of Encarsia formosa and Cales noaki (Hymenoptera: Aphelinidae). Brighton Crop Prot Conf—Pests and diseases, pp 305–310Google Scholar
  37. Gerling D, Sinai P (1994) Buprofezin effects on two parasitoid species of whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87: 842–846Google Scholar
  38. Gilbert LI, Bollenbacher WE, Goodman W, Smith SL, Agui N, Granger N, Sedlak BJ (198C) Hormones controlling insect metamorphosis. Recent Prog Horm Res 36: 401–449Google Scholar
  39. Gill SS, Cowles EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37: 615–636PubMedCrossRefGoogle Scholar
  40. Granett J, Weseloh RM (1975) Dimilin toxicity to the gypsy moth larval parasitoid, Apanteles melanoscelus. J Econ Entomol 68: 577–580Google Scholar
  41. Grosscurt AC (1978) Effect of diflubenzuron on mechanical penetrability, chitin formation, and structure of the elytra of Leptinotarsa decemlineata. J Insect Physiol 24: 827–831CrossRefGoogle Scholar
  42. Grosscurt AC, Anderson SO (1980) Effect of diflubenzuron on some chemical and mechanical properties of the elytra of Leptinotarsa decemlineata. Proc K Ned Akad Wet 83C: 143–150Google Scholar
  43. Haga T, Tobi T, Koyanagi T, Nishiyama R (1982) Structure activity relationships of a series of benzoyl-pyridyloxyphenyl-urea derivatives. Abstr, 5th Int Congr Pestic Chem (IUPAC), August 1982, Kyoto, p IId-7Google Scholar
  44. Hajjar NP, Casida JE (1979) Structure activity relationships of benzoylphenyl ureas as toxicants and chitin synthesis inhibitors in Oncopeltus fasciatus. Pestic Biochem Physiol 11: 33–45CrossRefGoogle Scholar
  45. Heller JJ, Mattioda H, Klein E, Sagenmüller A (1992) Field evaluation of RH-5992 on lepidopterous pests in Europe. Brighton Crop Prot Conf—Pests and diseases Nov 1992, vol 1, pp 59–66Google Scholar
  46. Henrick CA, Willy WE, Staal GB (1976) Insect juvenile hormone activity of alkyl (2E, 4E)-3, 7, 11-trimethyl-2, 4-dodecadienoates. Variations in the ester function and the carbon chain. J Agric Food Chem 24: 207–218PubMedCrossRefGoogle Scholar
  47. Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53: 242–255PubMedGoogle Scholar
  48. Holst H (1975) Die fertilit%otsbeeinflussende Wirkung des neuen Insektizids DDD 60–40 bei Epilacbna varivestis Muls. (Col.: Coccinellidae), und Leptinotarsa decemlineata Say (Col.: Chrysomelidae). Z Pflanzenkr Pflanzenschutz 82: 1–7Google Scholar
  49. Horn DHS, Galbraith MN, Kelly BA, Kinnear JF, Martin MD, Middleton EJ, Virgonia CTF (1981) Moulting hormones L III. The synthesis and biological activity of some ecdysone analogues. Aust J Chem 34: 2607–2618CrossRefGoogle Scholar
  50. Horowitz AR, Ishaaya I (1992) Susceptibility of the sweetpotato whitefly (Homoptera: Aleyrodidae) to buprofezin during the cotton season. J Econ Entomol 85: 318–324Google Scholar
  51. Horowitz AR, Ishaaya I (1994) Managing resistance to IGRs in the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87: 866–871Google Scholar
  52. Horowitz AR, Ishaaya I (1996) Chemical control of Bemisia tabaci—management and application. In: Gerling G, Mayer RT (eds) Bemisia 1995: taxonomy, biology, damage, control and management. Intercept, Andover, pp 537–556Google Scholar
  53. Horowitz AR, Klein M, Yablonski S, Ishaaya I (1992) Evaluation of banzoylphenyl ureas for controlling the spiny bollworm, Barias insulana (Boisd.) in cotton. Crop Prot. 11: 465–469CrossRefGoogle Scholar
  54. Horowitz AR, Forer G, Ishaaya I (1994) Managing resistance in Bemisia tabaci in Israel with emphasis on cotton. Pestic Sci 42: 113–122CrossRefGoogle Scholar
  55. Horowitz AR, Mendelson Z, Ishaaya I (1997) Effect of abamectin mixed with mineral oil on the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 90: 349–353Google Scholar
  56. Hoy MA, Cave FE (1985) Laboratory evaluation of avermectin as a selective acaricide for use with Metasciulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Exp Appl Acarol 1: 139–152CrossRefGoogle Scholar
  57. Ishaaya I (1990) Benzoylphenyl ureas and other selective control agents—mechanism and application. In: Casida JE (ed) Pesticides and alternatives. Elsevier, Amsterdam, pp 365–376Google Scholar
  58. Ishaaya I (1992) Selective insect control agents—mechanism and application. In: Otto D, Weber B (eds) Insecticides: mechanism of action and resistance. Intercept, Andover, pp 127–133Google Scholar
  59. Ishaaya I, Ascher KRS (1977) Effect of diflubenzuron on growth and carbohydrate hydrolases of Tribolium castaneum. Phytoparasitica 5: 149–158CrossRefGoogle Scholar
  60. Ishaaya I, Casida JE (1974) Dietary TH 6040 alters cuticle composition and enzyme activity of house fly larval cuticle. Pestic Biochem Physiol 4: 484–490CrossRefGoogle Scholar
  61. Ishaaya I, Horowitz AR (1992) Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entornol 85: 2113–2117Google Scholar
  62. Ishaaya I, Horowitz AR (1995) Pyriproxyfen, a novel insect growth regulator for controlling whiteflies: mechanism and resistance management. Pestic Sci 43: 227–232CrossRefGoogle Scholar
  63. Ishaaya I, Klein M (1990) Response of susceptible laboratory and resistant field strains of Spodoptem littoralis (Lepidoptera: Noctuidae) to teflubenzuron. J Econ Entomol 83: 59–62Google Scholar
  64. Ishaaya I, Navon A, Gurevitz E (1986) Comparative toxicity of chlorfluazuron (IKI-7899) and Cypermethrin to Spodoptem littomlis, Lobesia botrana and Drosophila melanogaster. Crop Prot 5: 385–388CrossRefGoogle Scholar
  65. Ishaaya I, Mendelson Z, Melamed-Majar V (1988) Effect of buprofezin on embryogenesis and progeny formation of sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 81: 781–784Google Scholar
  66. Ishaaya I, Blumberg D, Yarom I (1989) Buprofezin—a novel IGR for controlling whiteflies and scale insects. Meded Fac Landbouwwet Rijksuniv Gent 54: 1003–1008Google Scholar
  67. Ishaaya I, Mendelson Z, Horowitz AR (1993) Toxicity and growth suppression exerted by diafenthiuron in the sweetpotato whitefly Bemisia tabaci. Phytoparasitica 21: 199–204CrossRefGoogle Scholar
  68. Ishaaya I, De Cock A, Degheele D (1994) Pyriproxyfen, a potent suppresser of egg hatch and adult formation of the greenhouse whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87: 1185–1189Google Scholar
  69. Ishaaya I, Yablonski S, Horowitz AR (1995) Comparative toxicity of two ecdysteroid agonists, RH-2485 and RH-5992, on susceptible and pyrethroid-resistant strains of the Egyptian cotton leafworm, Spodoptera littoralis. Phytoparasitica 23: 139–145CrossRefGoogle Scholar
  70. Ishaaya I, Yablonski S, Mendelson Z, Mansour Y, Horowitz AR (1996) Novaluron (MCW-275), a novel benzoylphenyl urea, suppressing developing stages of lepidopteran, whitefly and leafminer pests. Brighton Crop Prot Conf—Pests and diseases Nov 1996, 1013–1020Google Scholar
  71. Itaya N (1987) Insect juvenile hormone analogue as an insect growth regulator. Sumitomo Pyrethroid World 8: 2–4Google Scholar
  72. Izawa Y, Uchida M, Sugimoto T, Asai T (1985) Inhibition of chitin biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens Stål. Pestic Biochem Physiol 24: 343–347CrossRefGoogle Scholar
  73. Jacobson M (Ed) (1988) Focus on phytochemical pesticides: the neem tree, vol 1. CRC Press, Boca RatonGoogle Scholar
  74. Jones D, Snyder M, Granett J (1983) Can insecticides be integrated with biological control agents of Trichoplusia ni in celery? Entomol Exp Appl 33: 290–296CrossRefGoogle Scholar
  75. Kadir HA, Knowles CO (1991a) Toxicological studies of the thiourea diafenthiuron in diamondback moths (Lepidoptera: Yponomeutidae), two-spotted spider mites (Acari: Tetranychidae), and bulb mite (Acari: Acaridae). J Econ Entomol 84: 780–784Google Scholar
  76. Kadir HA, Knowles CO (1991b) Inhibition of ATP dephosphorylation by acaricides with emphasis on the anti-ATPase activity of the carbodiimide metabolite of diafenthiuron. J Econ Entomol 84: 801–805PubMedGoogle Scholar
  77. Kanno H, Ikeda K, Asai T, Maekawa S (1981) 2-tert-butylimino-3-isopropyl-5-phenyl-perhydro-1, 3, 5-thiodiazin-4-one (NNI 750), a new insecticide. Brighton Crop Prot Conf, vol 1. pp 56–69Google Scholar
  78. Kawada H (1988) An insect growth regulator against cockroaches. Sumitomo Pyrethroid World 11: 2–4Google Scholar
  79. Koehler PG, Patterson RJ (1991) Incorporation of pyriproxyfen in a German cockroach (Dictyoptera: Blattellidae) management program. J Econ Entomol 84: 917–921PubMedGoogle Scholar
  80. Koolman J, Karlson P (1985) Regulation of ecdysteroid titer: degradation. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, Biochemistry and pharmacology, vol 7. Pergamon Press, Oxford, pp 343–361Google Scholar
  81. Langley P (1990) Control of the tsetse fly using a juvenile hormone mimic, pyriproxyfen. Sumitomo Pyrethroid World 15: 2–5Google Scholar
  82. Lasota JA, Dybas RA (1991) Avermectin, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36: 91–117PubMedCrossRefGoogle Scholar
  83. Leicht W (1993) Imidacloprid—a chloronicotinyl insecticide. Pestic Outlook 4: 17–21Google Scholar
  84. Masner P, Angst M, Dorn S (1987) Fenoxycarb, an insect growth regulator with juvenile hormone activity: a candidate for Heliothis virescens (F.) control on cotton. Pestic Sci 18: 89–94CrossRefGoogle Scholar
  85. Mauchamp B, Perrineau O (1987) Chitin biosynthesis after treatment with benzoylphenyl ureas. In: Wright JE, Retnakaran A (eds) Chitin and benzoylphenyl ureas. Dr W Junk, Dordrecht, pp 101–109CrossRefGoogle Scholar
  86. Mayer RT, Chen AC, DeLoach JR (1981) Chitin synthesis inhibiting insect growth regulators do not inhibit chitin synthase. Experientia 37: 337–338CrossRefGoogle Scholar
  87. Meadows MP (1993) Bacillus thuringiensis in the environment: ecology and risk assessment. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. John Wiley, Chichester, pp 193–220Google Scholar
  88. Mellin TN, Busch RD, Wang CC (1983) Postsynaptic inhibition of invertebrate neuromuscular transmission by avermectin Bla. Neuropharmacology 22: 89–96PubMedCrossRefGoogle Scholar
  89. Mendel Z, Blumberg D, Ishaaya I (1994) Effect of some insect growth regulators on natural enemies of scale insects (Homoptera: Coccoidea). Entomophaga 39: 199–209CrossRefGoogle Scholar
  90. Mitlin N, Wiygul G, Haynes JW (1977) Inhibition of DNA synthesis in boll weevils (Anthonomus grandis Boheman) sterilized by dimilin. Pestic Biochem Physiol 7: 559–563CrossRefGoogle Scholar
  91. Mizell RF, Schiffhaner DE, Taylor JL (1986) Mortality of Tetranychus urticae Koch (Acari: Tetranychidae) from abamectin residues: effects of host plant, light and surfactants. J Econ Entomol 21: 329–337Google Scholar
  92. Monthèan C, Potter DE (1992) Effects of RH-5849, a novel insect growth regulator, on Japanese beetle (Coleoptera: Scarabaeidae) and fall armyworm (Lepidoptera: Noctuidae) in turfgrass. J Econ Entomol 85: 507–513Google Scholar
  93. Mulder R, Gijswijk MT (1973) The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition. Pestic Sci 4: 737–745CrossRefGoogle Scholar
  94. Mulla MS, Majori G, Darwazeh HA (1975) Effects of the insect growth regulator Dimilin or TH 6040 on mosquitoes and some non-target organisms. Mosq News 35: 211–216Google Scholar
  95. Nagata T (1986) Timing of buprofezin application for control of the brown planthopper, Nilaparvata lugens Stil. (Homoptera: Delphacidae). Appl Entomol Zool 21: 357–362Google Scholar
  96. National Research Council (1992) Neem, a tree for solving global problems. National Academy Press, Washington, DC, 139 ppGoogle Scholar
  97. Navon A (1993) Control of lepidopteran pests with Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey MJ, Hidds S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. 6. John Wiley, Chichester, pp 125–146Google Scholar
  98. Navon A, Klein M, Braun S (1990) Bacillus thuringiensis potency bioassays against Heliothis armígera, Barias insulana and Spodoptera littoralis larvae based on standardized diets. J Invertebr Pathol 55: 387–393PubMedCrossRefGoogle Scholar
  99. Neuen R (1995) Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic Sci 44: 145–153CrossRefGoogle Scholar
  100. Peleg BA (1988) Effect of a new phenoxy juvenile hormone analog on California red scale (Homoptera: Diaspididae), Florida wax scale (Homoptera: Coccidae) and the ectoparasite Aphytis holoxanthus DeBache (Hymenoptera: Aphelinidae). J Econ Entomol 81: 88–92Google Scholar
  101. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect resistant cotton plants. Bio/Technology 8: 939–943PubMedCrossRefGoogle Scholar
  102. Post LC, de Jong BJ, Vincent WR (1974) 1-(2,6-disubstituted benzoyl)-3-phenylurea insecticides: inhibitors of chitin synthesis. Pestic Biochem Physiol 4: 473–483CrossRefGoogle Scholar
  103. Retnakaran A, Wright JE (1987) Control of insect pests with benzoylphenyl ureas. In: Wright JE, Retnakaran A (eds) Chitin and benzoylphenyl ureas. Dr W Junk, Dordrecht, pp 205–282CrossRefGoogle Scholar
  104. Retnakaran A, Granett J, Ennis T (1985) Insect growth regulators. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 12. Pergamon Press, Oxford, pp 529–601Google Scholar
  105. Robbins WE, Kaplanis JN, Thompson MJ, Shortino TJ, Joyner SC (1970) Ecdysone and synthetic analogs: molting hormone activity and inhibitive effects on insect growth, metamorphosis and reproduction. Steroids 16: 105–125PubMedCrossRefGoogle Scholar
  106. Rohrer SP, Birzin ET, Costa SD, Arena JP, Hayes EC, Schaeffer JM (1995) Identification of neuron-specific ivermectin binding sites in Drosophila melanogaster and Schistocerca americana. Insect Biochem Mol Biol 25: 11–17PubMedCrossRefGoogle Scholar
  107. Ruder FJ, Benson JA, Kayser H (1992) The mode of action of the insecticide/acaricide diafenthiuron. In: Otto D, Weber B (eds) Insecticides: mechanism of action and resistance. Intercept, Andover, pp 263–276Google Scholar
  108. Sarasua MJ, Santiago-Alvarez C (1983) Effect of diflubenzuron on the fecundity of Ceratitis capitata. Entomol Exp Appl 33: 223–225CrossRefGoogle Scholar
  109. Sbragia R, Bisarbi-Ershadi B, Rigterink RH (1983) XRD-473, a new acylurea insecticide effective against Heliothis. Brighton Crop Prot Conf, vol 1. pp 417–424Google Scholar
  110. Schaeffer JM, Haines HW (1989) Avermectin binding in Caenorhabditis eleganr. a two-state model for the avermectin binding site. Biochem Pharmacol 38: 2329–2338PubMedCrossRefGoogle Scholar
  111. Schmutterer H (ed) (1995) Neem tree—source of unique natural products for integrated pest management, medicine industry and other purposes. VCH, Weinheim, 696 ppGoogle Scholar
  112. Schooley DA, Baker FC (1985) Juvenile hormone biosynthesis. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. vol 17. Pergamon Press, Oxford, pp 363–389Google Scholar
  113. Schwinger M, Harrewijn P, Kayser H (1994) Effect of pymetrozine (CGA 215′944), a novel aphicide on feeding behavior of aphids. Proc 8th IUPAC Int Congr Pestic Chem, Washington, DC, vol 1. 230Google Scholar
  114. Shepard M, Kissam JB (1981) Integrated control of house flies on poultry farms: treatment of house fly resting surfaces with diflubenzuron plus releases of the parasitoids, Muscidifurax raptor. J GA Entomol Soc 16: 222–227Google Scholar
  115. Silhacek DL, Oberlander H, Procheron P (1990) Action of RH-5849, a non-steroidal ecdysteroid mimic, on Plodia interpunctella (Hübner) in vivo and in vitro. Arch Insect Biochem Physiol 15: 201–212CrossRefGoogle Scholar
  116. Slama K, Romanuk M, Sorm F (1974) Insect hormones and bioanalogues. Springer, Berlin Heidelberg, New YorkCrossRefGoogle Scholar
  117. Smagghe G, Degheele D (1992a) Effects of RH-5849, the first nonsteroidal ecdysteroid agonist, on larvae of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 21: 119–128CrossRefGoogle Scholar
  118. Smagghe G, Degheele D (1992b) Effect of the nonsteroidal ecdysteroid agonist RH-5849 on reproduction of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Parasitica 48: 23–29Google Scholar
  119. Smagghe G, Degheele D (1993) Metabolism, pharmacokinetics, and toxicity of the first nonsteroidal ecdysteroid agonist RH-5849 to Spodoptera exempta (Walker), Spodoptera exigua (Hübner) and Leptinotarsa decemlineata (Say). Pestic Biochem Physiol 46: 149–160CrossRefGoogle Scholar
  120. Smagghe G, Degheele D (1994a) Action of a novel nonsteroidal ecdysteroid mimic, tebufenozide (RH-5992), on insects of different orders. Pestic Sci 42: 85–92CrossRefGoogle Scholar
  121. Smagghe G, Degheele D (1994b) Action of the nonsteroidal ecdysteroid mimic RH-5849 on larval development and adult reproduction of insects of different orders. Invertebr Reprod Dev 25: 227–236CrossRefGoogle Scholar
  122. Smagghe G, Degheele D (1995) Selectivity of nonsteroidal ecdysteroid agonists RH-5849 and RH-5992 to nymphs and adults of the predatory soldier bugs, Podisus nigrispinus and Podisus maculiventris (Hemiptera: Pentatomidae). J Econ Entomol 88: 40–45Google Scholar
  123. Soltani N, Besson MT, Delachambre J (1984) Effect of diflubenzuron on the pupal-adult development of Tenebrio molitor L. (Coleoptera: Tenebrionidae): growth and development, cuticle secretion, epidermal cell density and DNA synthesis. Pestic Biochem Physiol 21: 256–264CrossRefGoogle Scholar
  124. Staal GB (1982) Insect control with growth regulators interfering with the endocrine system. Entomol Exp Appl 31: 15–23CrossRefGoogle Scholar
  125. Steinemann A, Stamm E, Frei B (1990) Chemodynamics in research and development of new plant protection agents. Pestic Outlook 1(3): 3–7Google Scholar
  126. Streibert HP, Drabek J, Rindlisbacher A (1988) CGA 106630—a new type of acaricide/insecticide for the control of the sucking pest complex in cotton and other crops. Brighton Crop Prot Conf—Pests and diseases, vol 1. pp 25–33Google Scholar
  127. Thompson WT (1989) Agricultural chemicals, book 1. Thompson, Fresno, pp 64–70Google Scholar
  128. Tomizawa M, Otsuka H, Miyamoto T, Eldefrawi ME, Yamamoto I (1995a) Pharmacological characteristics of insect nicotinic acetylcholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids. J Pestic Sci 20: 57–64CrossRefGoogle Scholar
  129. Tomizawa M, Otsuka H, Miyamoto T, Yamamoto I (1995b) Pharmacological effects of imidacloprid and its related compounds on the nicotinic acetylcholine receptor with its ion channel from the Torpedo electric organ. J Pestic Sci 20: 49–56CrossRefGoogle Scholar
  130. Van de Veire M, Degheele D (1993) Side effects of diafenthiuron on the greenhouse whitefly parasitoid Encarsia formosa and the predatory bug Orius niger and its possible use in IPM in greenhouse vegetables. Meded Fac Landbouwwet Rijksuniv Gent 53: 509–514Google Scholar
  131. Van Eck WH (1979) Mode of action of two benzoylphenyl ureas as inhibitors of chitin synthesis in insects. Insect Biochem 9: 295–300CrossRefGoogle Scholar
  132. Williams CM (1967) Third-generation pesticides. Sci Am 217: 13–17PubMedCrossRefGoogle Scholar
  133. Wilson D, Anema BP (1988) Development of buprofezin for control of whitefly Trialeurodes vaporariorum and Bemisia tabaci on glasshouse crops in the Netherlands and the UK. Brighton Crop Prot Conf—Pests and diseases, pp 175–180Google Scholar
  134. Wing KD (1988) RH-5849, a nonsteroidal ecdysone agonist: effects on a Drosophila cell line. Science, Wash D C 241: 467–469CrossRefGoogle Scholar
  135. Wing KD, Slawecki RA, Carlson GR (1988) RH-5849, a nonsteroidal ecdysone agonist: effects on larval lepidoptera. Science, Wash D C 241: 470–472CrossRefGoogle Scholar
  136. Wislocki PG, Grosso LS, Dybas RA (1989) Environmental aspects of abamectin use in crop protection. In: Campbell WC (ed) Ivermectin and abamectin. Springer, Berlin Heidelberg, New York, pp 182–200CrossRefGoogle Scholar
  137. Wright JE, Harris RL (1976) Ovicidal activity of Thompson-Hayward TH 6040 in the stable fly and horn fly after surface contact by adults. J Econ Entomol 69: 728–730PubMedGoogle Scholar
  138. Wright DJ, Loy A, Green ASJ, Dybas RA (1985) The translaminar activity of abamectin (MK-936) against mites and aphids. Meded Fac Landbouwwet Rijksuniv Gent 50: 633–637Google Scholar
  139. Yamamoto I, Yabuta G, Tomizawa M, Saito T, Miyamoto T, Kagabu S (1995) Molecular mechanism of selective toxicity of nicotinoids and neonicotinoids. J Pestic Sci 20: 33–40CrossRefGoogle Scholar
  140. Yarom I, Blumberg D, Ishaaya I (1988) Effect of buprofezin on California red scale (Homoptera: Diaspididae) and mediterranean black scale (Homoptera: Coccidae). J Econ Entomol 81: 1581–1585Google Scholar
  141. Yasui M, Fukada M, Maekawa S (1985) Effect of buprofezin on different developmental stages of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Appl Entomol Zool 20: 340–347Google Scholar
  142. Yasui M, Fukada M, Maekawa S (1987) Effect of buprofezin on reproduction of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Appl Entomol Zool 22: 266–271Google Scholar
  143. Zhang Z, Sanderson JP (1990) Relative toxicity of abamectin to the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) and the two spotted spider mite (Acari: Tetranychidae). J Econ Entomol 83: 1783–1790Google Scholar
  144. Zimowska G, Mikolajczyk P, Silhacek DL, Oberlander H (1994) Chitin synthesis in Spodoptera frugiperda wing imaginai discs. II. Selective action of chlorfluazuron on wheat germ agglutinin binding and cuticle ultrastructure. Arch Insect Biochem Physiol 27: 89–108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • I. Ishaaya
    • 1
  • A. R. Horowitz
    • 1
  1. 1.Department of Entomology, Agricultural Research OrganizationThe Volcani CenterBet DaganIsrael

Personalised recommendations