Advertisement

Complex Effects in Turbulent Flows

  • Jean Piquet
Chapter

Abstract

When a boundary layer undergoes a rapid acceleration through a strongly favourable pressure gradient, the violent eruptions away from the wall, near the edge of the viscous sublayer cease when the pressure gradient reaches a critical value given by (Schraub & Kline, 1965; Moretti & Kays, 1965):
$$ {K_{acc}} \equiv \frac{v}{{U_e^2}}\frac{{d{U_e}}}{{dx}} = - \frac{v}{{\rho U_e^3}}\frac{{dP}}{{dx}} = 3.5\,{10^{ - 6}} $$
(6.1a)

Keywords

Boundary Layer Wall Shear Stress Reynolds Stress Turbulent Boundary Layer Secondary Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abell, C.J. (1974) Scaling laws for pipe flows. PhD Thesis, Univ. Melbourne, Australia.Google Scholar
  2. Abramowitz, M. & Stegun, I.A. (1972) Handbook of Mathematical Functions, Dover Publ. Inc., New York.MATHGoogle Scholar
  3. Abujelala, M.T. & Lilley, D.G. (1984) Limitations and empirical extensions of the K-e model as applied to turbulent confined swirling flows. Chem. Engng. Comm., Vol.31, pp.223–236.Google Scholar
  4. Acharya, M. & Escudier, M. (1987) Turbulent flow over mesh roughness. In Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W. & Whitelaw, J.H. Turbulent shear flows, Vol.5, Springer Verlag.Google Scholar
  5. Achenbach, E. (1974) Vortex shedding from spheres, J. Fluid Mech., Vol.62, pp.209–221.Google Scholar
  6. Adams, E.W. & Johnston, J.P. (1984) A mixing-length model for the prediction of convex curvature effects on turbulent boundary layers. Trans. ASME J, J. Eng. Gas Turbines & Power, Vol.106, pp. 142–148.Google Scholar
  7. Afzal, N. & Narasimha, R. (1976) Axisymmetric turbulent boundary layer along a circular cylinder at constant pressure. J. Fluid Mech., Vol.74, Pt.1, pp.113–128.Google Scholar
  8. Afzal, N. & Singh, K.P. (1976) Measurements in an axisymmetric turbulent boundary layer along a circular cylinder. Aero. Quart., Vol.27, Pt.3, pp.217–228.Google Scholar
  9. Agarwal, R.K. & Bower, W.W. (1982) Navier-Stokes computations of turbulent compressible two-dimensional impinging jet flowfields. AIAA Journ., Vol.20, No.5, pp.577–584.MATHGoogle Scholar
  10. Agarwal, N.K.& Simpson, R.L. (1990) The backflow structure of steady and unsteady separating turbulent boundary layers. AIAA Journ., Vol.28, pp.1764–1771.Google Scholar
  11. Ahmed, S. & Brundrett, E. (1971) Turbulent flow in non circular ducts. Mean flow properties in the development of a square duct. Part 1. Mean flow properties in the devleoping region of a square duct. Int. J. Heat Mass Transfer, Vol.14, pp.365–375.Google Scholar
  12. Aleksin, V.A. (1998) Simulation of the effect of the freestream turbulence parameters on the boundary layer of a curvilinear airfoil. Fluid Dynamics, Vol.33, No.5, pp.701–709.MATHGoogle Scholar
  13. Alfredsson, P.H., Johansson, A.V., Haritonidis, J.H. & Exkelmann, H. (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids, Vol.31, No.5, pp.1026–1033.Google Scholar
  14. Algiferi, A.H., Bhardwaj, R.K. & Rao, Y.V.N. (1987) Prediction of the decay process in turbulent swirl flow. Proc.Inst. Mech. Engnrs., Vol.201, pp.279–283.Google Scholar
  15. Alving, A.E. & Fernholz, H.H. (1995) Mean-velocity scaling in and around a mild, turbulent separation bubble. Phys. Fluids A, Vol.7, No.8, pp.1956–1969.Google Scholar
  16. Alving, A.E., Smits, A.J. & Wattmuff, J.H. (1990) Turbulent boundary layer relaxation from convex curvature. J. Fluid Mech., Vol. 211, pp.529–556.Google Scholar
  17. Ames, F.E. & Moffat, R.J. (1990) Heat transfer with high intensity, large scale turbulence: the flat plate turbulent boundary layer and the cylindrical stagnation point Stanford Univ. Report HMT-44. Google Scholar
  18. Anderson, S.D. & Eaton, J.K. Experimental study of a pressure-driven three-dimensional turbulent boundary layer. AIAA Journ., Vol.25, pp.1086–1092 (1987).Google Scholar
  19. Anderson, S.D. & Eaton, J.K. (1989) Reynolds stress development in pressure-driven three-dimensional turbulent boundary layers. J. Fluid Mech., Vol.202, pp.263–294.Google Scholar
  20. Andreopoulos, J. & Bradshaw, P. (1981) Measurements of the turbulence structure in the boundary layer on a rough surface. Boundary Layer Met., Vol.20, pp.201–213.Google Scholar
  21. Antonia, R.A. & Luxton, R.E. (1971a) The response of a turbulent boundary layer to an upstanding step change in surface roughness. Trans. ASME, Journ. Basic Eng., Vol.93, pp.22–34.Google Scholar
  22. Antonia, R.A. & Luxton, R.E. (1971b) Energy balance in a turbulent boundary layer on a rough wall. Phys.Fluids, Vol.14, No. 5, pp.1027–1029.Google Scholar
  23. Antonia, R.A. & Luxton, R.E. (1971c) The response of a turbulent boundary layer to a step change in surface roughness, Part I, Smooth to Rough, Journ. Fluid Mech., Vol. 48, Part 4, pp.721–761.Google Scholar
  24. Antonia, R.A., Shah, D.A. & Browne, L.W.B. (1987), Spectra of velocity derivatives in a turbulent wake, Phys.Fluids, Vol.30, No.11, pp.3455–3462.Google Scholar
  25. Antonia, R.A., Zhu, Y. & Kim, J. (1993) On the measurement of lateral velocity derivatives in turbulent flows, Exp. Fluids, Vol.15, pp.65–69.Google Scholar
  26. Anwer, M. & So, R.M.C. (1989) Rotation effects on a fully developed turbulent pipe flow. Exp. Fluids, Vol. 8, pp.33–40.Google Scholar
  27. Arndt, R.E.A. & Ippen, A.T. (1968) Rough surface effects on cavitation inception. J. Basic Engng. Trans. ASME, Vol.90, pp.249–261Google Scholar
  28. Azzola, J., Humphrey, J.A.C., Lacovides, H., Launder, B.E. (1986) Developing turbulent flow in a U-bend of circular cross-section measurement and computation. Trans. ASME, J. Fluids Eng., Vol. 43, pp.771–783.Google Scholar
  29. Azzola, J., Humphrey, J.A.C., Lacovides, H. & Launder, B.E. (1987) Trans. ASME, J. Fluids Eng., Vol.108, pp.214.Google Scholar
  30. Back, L.H. & Seban, R.A. (1967) Convective heat transfer in a convergent-divergent nozzle. Proc. Heat Transf.Fluid Mech. Inst., Vol.20, p.410.Google Scholar
  31. Badri-Narayanan, M.A. (1968) An experimental study of reverse transition in a two-dimensional channel flow. J. Fluid Mech., Vol.31, p.609.Google Scholar
  32. Badri Narayanan, M.A., Khadgy, Y.N. & Viswanath, P.R. (1974) Similarities in pressure distribution in separated flow behind backward-facing steps. Aero. Quarterly, Vol.25, pp.305–312.Google Scholar
  33. Badri Narayanan, M.A. & Ramjee, V. (1969) On the criteria for reverse transition in a two-dimensional boundary layer flow. J. Fluid Mech., Vol.35, Pt.2, pp.225–241.Google Scholar
  34. Baker, C.J. (1980) The turbulent horseshoe vortex. J. Wind Eng. Industr. Aero., Vol.6, pp.9–23.Google Scholar
  35. Baker, A.J. & Orzechowski, J.A. (1983) An interaction algorithm for three-dimensional turbulent subsonic aerodynamic juncture region flow. AIAA Journ., Vol.21, pp.524–533.MATHGoogle Scholar
  36. Bandyopadhyay, P.R. (1986) Review — Mean flow in turbulent boundary layers disturbed to alter skin friction. Trans. ASME, J. Fluids Eng., Vol.108, pp.127–145.Google Scholar
  37. Bandyopadhyay, P.R. (1987) Rough-wall turbulent boundary layers in the transitional régime. J. Fluid Mech., Vol.180, pp.231–266.Google Scholar
  38. Bandyopadhyay, P.R. (1990) Convex curvature concept of viscous drag reduction. In Bushneil, D.M. & Hefner, J.N. (Eds.) Viscous drag reduction in boundary layers. Vol.123, pp.285–324.Google Scholar
  39. Bandyopadhay, P.R. & Watson, R.D. (1988) Structure of rough-wall boundary layers. Phys. Fluids, Vol.31, No.7, pp.1877–1883.Google Scholar
  40. Bardina, J., Lyrio, A.A., Kline, S J., Ferziger J. H. & Johnston, J.P. (1981) A prediction method for planar diffuser flows, Trans. ASME, Journ. Fluids Eng., Vol.103, pp.315–321.Google Scholar
  41. Bardina, J. Ferziger, J. H. & Rogallo, R.S. (1985) Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech., Vol.154, pp.321–336.Google Scholar
  42. Barlow, R.S. & Johnston, J.P. (1988a) Structure of a turbulent boundary layer on a concave surface. J. FluidMech., Vol.191, pp.137–176.Google Scholar
  43. Barlow, R.S. & Johnston, J.P. (1988b) Local effects of large-scale eddies on bursting in a concave boundary layer. J. Fluid Mech., Vol.191, pp.177–195.Google Scholar
  44. Barnwell, R.J., Wahls, R.A. & DeJarnette, F.R. (1989) Defect stream function, law of the wall/wake method for turbulent boundary layers. AIAA Journ., Vol. 27, No.12, pp.1707–1721.Google Scholar
  45. Baskaran, V., Smits, A.J. & Joubert, P.N. (1987) A turbulent flow over a curved hill. Part 1. Growth of an internal boundary layer, J. Fluid Mech., Vol.182, pp.47–83.Google Scholar
  46. Batchelor, G.K. (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quart. J. Mech. Appl. Math., Vol.4, pp.29–41.MathSciNetMATHGoogle Scholar
  47. Bearman, P.W. (1978) Turbulence effects on bluff body mean flow. Proc. 3rd. U.S. Nat. Conf. Wind Engng., Florida, p.LV-1.Google Scholar
  48. Bearman, P.W. & Morel, T. (1983) Effect of freestream turbulence on the flow around bluff bodies. Progr. Aerosp.Sei., Vol.20, pp.97–123.Google Scholar
  49. Besserman, D.L. & Tanrikut, S. (1991) Comparison of heat transfer measurements with computations for turbulent flow around a 180° bend. Proc. Int. Gas-Turb. and Aero Congress (ASME Paper 91-GT-2J, Orlando, Fl.Google Scholar
  50. Bettermann, D. (1966) Contribution à l’étude de la convection forcée le long de plaques rugueuses. Int. J. Heat MassTransfer, Vol.9, pp.153–164.Google Scholar
  51. Bissonnette, L.R. & Mellor, G.L. (1974) Experiments on the behavior of an axisymmetric turbulent boundary layer with a sudden circumferential strain, J. Fluid Mech., Vol.63, Pt.2, pp.369–413.Google Scholar
  52. Blackwelder, R. & Kovasznay, L.S.G. (1972) Large-scale motion of a turbulent boundary layer during relaminarization. J. Fluid Mech., Vol.53, Part 1, pp.61–83.Google Scholar
  53. Blair, M.F. (1983) Influence of freestream turbulence on boundary layer heat tranfser and mean profile development Part 1 — experimental data. Trans. ASME, Journ. Heat Tranfer, Vol.105, No.2, pp.33–40 and 41–47.Google Scholar
  54. Bo, T., Iacovides, H. & Launder, B.E. (1995) Developing buoyancy-modified turbulent flow in ducts rotating in orthogonal mode. Trans. ASME J. Turbomachinery, Vol.117, pp.474–484.Google Scholar
  55. Borishenko, A.I., Kostikov, O.N. & Chumachenko, V.I. (1973) Experimental investigation of turbulent flow characteristics in a rotating channel. J. Eng. Phys., Vol.24, No.6, pp.1103–1108.Google Scholar
  56. Bradshaw, P. (1965) The effect of wind tunnel screens on nominally two-dimensional boundary layers. J. FluidMech., Vol.22, Pt.4, pp.679–688.Google Scholar
  57. Bradshaw, P. (1967a) Irrotational fluctuations near a turbulent boundary. J. Fluid Mech., Vol.27, Part 2, pp.209–230.Google Scholar
  58. Bradshaw, P. (1967b) ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech., Vol.30, Part 2, pp.241–258.Google Scholar
  59. Bradshaw, P. (1969) The analogy between streamline curvature and byoyancy in turbulent shear flow, J. FluidMech., Vol.36, Part 4, pp.177–191.MATHGoogle Scholar
  60. Bradshaw, P. (1972) The understanding and prediction of turbulent flow, Aeron. Journal, Vol.76, p.403–418.Google Scholar
  61. Bradshaw, P. (1973) Effects of streamline curvature on turbulence, AGARDograph 169. Google Scholar
  62. Bradshaw, P. (1978) (Ed.) Turbulence, Topics in Applied Physics, Vol.12, Springer Verlag, Berlin.Google Scholar
  63. Bradshaw, P. & Pankhurst, R.C. (1964) The design of low-speed wind tunnels. Progr. Aeron. Sci., Vol.5, pp. 1–69.Google Scholar
  64. Bradshaw, P. & Pontikos, N.S. (1985) Measurements in the turbulent boundary layer on an infinite swept wing. J. Fluid Mech., Vol.159, pp.105–130.Google Scholar
  65. Bradshaw, P. & Terrell, M.G. (1969) The response of a turbulent boundary layer on an infinite swept wing to the removal of pressure gradient. NPL Aero Rep. 1305. Google Scholar
  66. Bradshaw, P. & Wong, F.Y.F. (1972) Reattachment of a turbulent boundary layer. J. Fluid Mech., Vol. 52, Part 1, pp.113–135.Google Scholar
  67. Bremhorst, K. & Walker, T.B (1973). Spectral measurements of turbulent momentum transfer in fully-developed pipe flow. J. Fluid Mech., Vol.61, pp.173–186.Google Scholar
  68. Brinich, P.F. & Graham, R.W. (1977). Flow and heat transfer in a curved channel. NASA TN D-8464 Google Scholar
  69. Brown, K.C. & Joubert, P.N. (1969) The measurement of skin friction in turbulent boundary layers with adverse pressure gradients, J. Fluid Mech., Vol.35, Part 4, pp.737–757.Google Scholar
  70. Brundrett, E. & Baines, W.D.(1964) The production and diffusion of vorticity in duct flow, J. Fluid Mech., Vol.19, pp.375–392.MATHGoogle Scholar
  71. Bunker, R.S., Metzger, D.E. & Wittig, S. (1990a) Local heat transfer in turbulent disk cavities. PU: Rotor-stator cooling with hub injection of coolant. ASME 90-GT-25, Proc. of Gas Turbine and Aeroengine Congress, Brussels, Belgium.Google Scholar
  72. Bunker, R.S., Metzger, D.E. & Wittig, S. (1990b) Local heat transfer in turbulent disk cavities. Pt.2: Rotor cooling with radial-location injection of coolant. ASME 90-GT-26, Proc. of Gas Turbine and Aeroengine Congress, Brussels, Belgium.Google Scholar
  73. Cannon, J.N. & Kays, W.M. (1969) Heat transfer to a fluid flowing inside a pipe rotating about its longitudinal axis. Trans. ASME, J. Heat Transfer, Vol.91, No.1, pp.135–139.Google Scholar
  74. Case, P. (1966) Measurements of entrainment by a free rotating disk. J. R. Aero. Soc., Vol.71, p.124.Google Scholar
  75. Castro, I.P. (1984) Effects of free-stream turbulence at low Reynolds number boundary layers. Trans.ASME, J.Fluids Eng., Vol. 106, pp.298–306.Google Scholar
  76. Castro, I.P. & Epik, E. (1995) Boundary layer relaxation after a separated region. Proc. 10th. Symp. TurbulentShear Flow, Penn. State Univ., pp.5–1, 6.Google Scholar
  77. Castro, I.P. & Haque, A. (1987) The structure of a turbulent boundary layer bounding a separation region, J. FluidMech., Vol.179, pp.439–468.Google Scholar
  78. Cebeci, T. & Abbott, D.E. (1975) Boundary layers on a rotating disk. AIAA Journ., Vol. 13, pp.829–832 .Google Scholar
  79. Cebeci, T. & Bradshaw, P. (1977) Momentum Transfer in Boundary Layers, McGraw-Hill, New York.MATHGoogle Scholar
  80. Cham, T.S. & Head, M.R. (1969) Turbulent boundary layer flow on a rotating disk. J. Fluid Mech., Vol.37, Pt.1, pp. 129–148.Google Scholar
  81. Cham, T.S. & Head, M.R. (1970) The turbulent boundary layer on a rotating cylinder in an axial stream. J. FluidMech., Vol.42, Pt.1, pp.1–16.Google Scholar
  82. Cham, T.S. & Head, M.R. (1971) The turbulent boundary layer on a rotating nose-body. Aero. Quart., Vol.22, Pt.4, pp.389–402.Google Scholar
  83. Chambers, F.W., Murphy, H.D. & Mc Eligot, D.M. (1983) Laterally converging flow. Part 2: Temporal shear stress, J. Fluid Mech., Vol.127, pp.403–428.Google Scholar
  84. Chandrasekhar, N. & Swamy, N.V.C. (1976) Wall shear stress inference for three-dimensional turbulent boundary layer profiles. Trans. ASME, J. Appl. Mech., Vol.43, pp.20–27.Google Scholar
  85. Chang, P.K. (1970) Separation of Flow. Pergamon Press, Oxford.MATHGoogle Scholar
  86. Chang, K.C. & Chen, C.S. (1993) Development of a hybrid K-e model for swirling recirculating flows under moderate to strong swirl intensities. Int. J. Num. Methods Fluids, Vol.16, pp.421–443.MATHGoogle Scholar
  87. Chang, S.M., Humphrey, J.A.C. & Modavi, A. (1983) Turbulent flow in a strongly curved U-bend and downstream tangent of square cross-sections. Physico-chemical Hydrodynamics, Vol.4, pp.243.Google Scholar
  88. Charnay, G., Comte-Bellot, G. & Mathieu, J. (1971) Development of a boundary layer on a flat plate in an external turbulent flow. Paper No.27, AGARD CP-93. Google Scholar
  89. Charnay, G., Comte-Bellot, G. & Mathieu, J. (1972) Etude de la frontière libre d’une couche limite turbulente perturbée. Comptes Rendus Acad. Sciences, Paris, Ser.A, Vol.275, pp.615–618.Google Scholar
  90. Charnay, G., Mathieu, J. & Comte-Bellot, G. (1976) Response of a turbulent boundary layer to random fluctuations in the external stream. Phys. Fluids, Vol.19, No.9, pp.1261–1273.Google Scholar
  91. Cheah, S.C., Iacovides, H., Jackson, D.C., Ji, H. & Launder, B.E. (1994) Experimental investigation of enclosed rotor-stator disk flows. Exp. Thermal Fluid Science, Vol.9, pp.445–455.Google Scholar
  92. Chen, K.K. (1972) Compressible turbulent boundary layer heat transfer to rough surfaces in pressure gradient. AIAAJourn., Vol.10, No.5, pp. 623–629.Google Scholar
  93. Chen, C.P. (1986) Calculation of confined swirling jets. Comm. Appl. Numer. Meths., Vol.2, pp.333–338.MATHGoogle Scholar
  94. Chen, J.C. & Lin, CA. (1997) Computations of strongly swirling flows with quadratic pressure-strain model. Proc. 11th. Symp. Turbulent Shear Flows, Grenoble, pp.P3–59, 64.Google Scholar
  95. Chen, H.C. & Patel, V.C (1988) Near-wall models for complex flows including separation. AIAA Journ., Vol.26, pp.641–648.Google Scholar
  96. Chen, C.K. & Roberson, J.A. (1974) Turbulence in wakes of roughness elements. Journ. Hydraulics Div. ASCE, Vol.100, pp.53–67.Google Scholar
  97. Chesnakas, C J. & Simpson, R.L. (1994) Full three-dimensional measurements of the cross-flow separation region of a 6:1 prolate spheroid. Exp. Fluids, Vol.17, pp.68–74.Google Scholar
  98. Chesnakas, C.J.& Simpson, R.L. (1996) Measurements of the turbulence structure in the vicinity of a 3-D separation. Trans. ASME, J. Fluids Engng., Vol.118, pp.268–275.Google Scholar
  99. Chevray, R. & Tutu, N.K. (1978) Intermittency and preferential transport of heat in a round jet, J. Fluid Mech., Vol. 88, Part 1, pp.133–160.Google Scholar
  100. Chew, J.W. (1991) A theoretical study of ingress for shrouded rotating disk systems with radial outflow. J.Turbomachinery, Vol.113, pp.91–97.Google Scholar
  101. Chew, J.W., Owen, J.M. & Pincombe, J.R. (1984) Numerical predictions for laminar source-sink flow in a rotating cylindrical cavity. J. Fluid Mech., Vol.155, p.233.Google Scholar
  102. Chew, J.W. & Rogers, R.H. (1988) An integral method for the calculation of turbulent forced convection in a rotating cavity with radial outflow. Int. J. Heat Fluid Flow, Vol.9, pp.37–48.Google Scholar
  103. Chien, K.Y. (1982) Predictions of channel and boundary layer flows with a low-Reynolds number two-equation model of turbulence, AIAA Journ., Vol.20, No.1, pp.33–38.MathSciNetMATHGoogle Scholar
  104. Choi, Y.D., Iacovides, H. & Launder, B.E. (1989) Numerical computation of turbulent flow in a square sectioned 180 deg. bend. Trans. ASME, J. Fluids Eng, Vol.111, pp.59–68.Google Scholar
  105. Chung, M.K., Park, S.W. & Kim, K.C. (1987) Curvature effects on third-order velocity correlation and its model representation. Phys. Fluids, Vol. 30, No.3, pp.626–628.Google Scholar
  106. Churchill, S.W. (1993) Theoretically based expressions in closed form for the local and mean coefficients of skin friction in fully turbulent flow along smooth and rough plates. Int. J. Heat Fluid Flow, Vol.14, No.3, pp.231–239.Google Scholar
  107. Ciochetto, D.S. & Simpson, R.L. (1995) An investigation of three-dimensional turbulent boundary layers, 10th.Symp. Turbulent Flows, Penn. State Univ. Paper 7–25, 30.Google Scholar
  108. Cionco, R.M. (1972) Intensity of turbulence within canopies with simple and complex roughness elements. Boundary Layer Met., Vol.2, pp.543–465.Google Scholar
  109. Cobb, C. & Saunders, O.A. (1956) Heat transfer from a rotating disk. Proc. Roy. Soc. London, Vol.A236, pp.343–351.Google Scholar
  110. Cokljat, D., Carter, J.G. & Emerson, D.R. (1996) Calculation of flow in transition duct using second-order closure and wall functions. AIAA J., Vol.34, No.11, pp.2437–2439.MATHGoogle Scholar
  111. Colebrook, C.F. (1939) Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws. Journ. Inst. Civil Engngrs., Vol.11, pp. 133–156.Google Scholar
  112. Colebrook, C.F. & White, CM. (1937) Experiments with fluid motion in roughened pipes. Proc. Roy. Soc.London, Vol.A161, pp.367–381.Google Scholar
  113. Coleman, H.W., Moffat, R.J. & Kays, W.M. (1977) The accelerated fully rough turbulent boundary layer. J. FluidMech., Vol.82, Pt. 3 pp.507–528.Google Scholar
  114. Coles, D. (1956) The law of the wake in the turbulent boundary layer. J. Fluid Mech., Vol.1, pp. 191–226.MathSciNetMATHGoogle Scholar
  115. Coles, D.E. & Hirst, E.A. (1968) Proc. Computation of Boundary Layers, AFOSR-IFP Conf. Vol.1.Google Scholar
  116. Compton, D.A. & Eaton, J.K. (1997) Near-wall measurements in a three-dimensional turbulent boundary layer. J. Fluid Mech., Vol.350, pp. 189–208.Google Scholar
  117. Consigny, H. & Richards, B.E. (1982) Short-duration measurements of heat transfer rate to a gas turbine rotor blade. Trans. ASME, Journ. Engng. Power, Vol.4, pp.542.Google Scholar
  118. Costis, C.E., Hoang, N.T. & Telionis, D.P. (1989) Laminar separating flow over a prolate spheroid. J. Aircraft, Vol.86, pp.810–816.Google Scholar
  119. Crane, R.I. & Winoto, S.H. (1980) Longitudinal vortices in a concave surface boundary layer. In AGARD CP 271 on Turbulent boundary layers — Experiments, Theory and Modeling .Google Scholar
  120. Cutler, A.D. & Bradshaw, P. (1993a) Strong vortex/boundary layer interactions. Part I. Vortices high. Exp. Fluids, Vol.14, pp.321–332.Google Scholar
  121. Cutler, A.D. & Bradshaw, P. (1993b) Strong vortex/boundary layer interactions. Part II. Vortices low. Exp. Fluids, Vol.14, pp.393–401.Google Scholar
  122. Cutler, A.D. & Johnston, J.P. (1989) The relaxation of a turbulent boundary layer in an adverse pressure gradient. J. Fluid Mech., Vol.200, pp.367–387.Google Scholar
  123. Daily, J.W. & Nece, R.E. (1960) Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J. Basic Engng. Trans. ASME, Vol.82, p. 117Google Scholar
  124. Daily, J.W., Ernst, W.D. & Asbedian, V. (1964) Enclosed rotating disks with superposed throughflow; mean steady and periodic unsteady characteristics of induced flow. Report No.64, Hydrodynamic Lab, MIT64, MIT, Cambridge, MA.Google Scholar
  125. Dalle Donne, M. & Meyer, L. (1977) Turbulent convective heat transfer from rough surfaces with two-Dimensional rectangular ribs. Int. J. Heat Mass Transfer, Vol.20, No.6, pp.583–620.Google Scholar
  126. Davis, D.O. & Gessner, F.B. (1992) Experimental investigation of turbulent flow through a rectangular-to-circular transition duct. AIAA Journ., Vol.30, No.2, pp.367–375.Google Scholar
  127. Debisschop, J.R. & Nieuwstadt, F.T.M. (1996) Turbulent boundary layer in an adverse pressure gradient; effectiveness of riblets. AIAA Journ., Vol.34, pp.932–937.Google Scholar
  128. DeChow, R. & Felsch, K.O. (1977) Measurements of the mean velocity and of the Reynolds stress tensor in a three-dimensional boundary layer induced by a cylinder standing on a flat plate. Symp. Turbulent Shear Flows, pp.9.11–9.20, University Park, PA.Google Scholar
  129. Degani, A.T., Smith, F.T. & Walker, J.D.A. (1992) The three-dimensional turbulent boundary layer near a plane of symmetry. J. Fluid Mech., Vol. 234, pp.329–360.MathSciNetMATHGoogle Scholar
  130. Degani, A.T., Smith, F.T. & Walker, J.D.A. (1993) The structure of a three-dimensional turbulent boundary layer. J. Fluid Mech., Vol. 250, pp.43–68.MathSciNetMATHGoogle Scholar
  131. DeGrande, G. & Hirsch, C. (1978) Three-dimensional incompressible turbulent boundary layers. Free Univ Brussels, VUB-STR-8 Report, Brussels, Belgium .Google Scholar
  132. Demuren, A.O. & Rodi, W. (1984) Calculation of turbulence-driven secondary motion in non circular ducts, J.Fluid Mech., Vol.140, pp.189–222.MATHGoogle Scholar
  133. Dengel, P. & Fernholz, H.H. (1990) An experimental investigation of an incompressible turbulent boundary layer in the vicinity of separation, J. Fluid Mech., Vol.212, pp.615–636.Google Scholar
  134. Denli, N & Landweber, L. (1979) Thick axisymmetric boundary layer on a circular cylinder. Journ. Hydronautics, Vol.13, No.3, pp.93–104.Google Scholar
  135. Devenport, W.J. & Simpson, R. (1990) Time dependent and time averaged turbulence structure near the nose of a wing-body junction. J. Fluid Mech., Vol.210, pp.23–55.Google Scholar
  136. Devenport, W.J. & Sutton, P. (1991) Near-wall behavior of separated and reattaching flows. AIAA Journ., Vol.20, No.1, pp.25–31.Google Scholar
  137. Dianat, M. & Castro, I.P. (1991) Turbulence in a separated boundary layer. J. Fluid Mech., Vol.226, pp.91–123.Google Scholar
  138. Dijkstra, D. & Van Heijst, GJ.F. (1983) The flow between two finite rotating disks enclosed by a cylinder. J. Fluid Mech., Vol.128, pp.123–157.MATHGoogle Scholar
  139. Dickinson, S.C. (1986) An experimental investigation of appendage-flat plate junction flow. Vol.1: description. DTNSRDC Rep.86/051. Google Scholar
  140. Dorfman, L.A. (1963) Hydrodynamic resistance and the heat loss of rotating solids, Oliver & Boyd.Google Scholar
  141. Driver, D.M. (1991) Reynolds shear stress measurements in a separated boundary layer flow. AIAA paper 91–1787, 22nd. Fluid Dyn. Plasma Lasers Conf.Google Scholar
  142. Driver, D.M. & Hebbar, S.K. (1987) Experimental study of a three-dimensional, shear-driven, turbulent boundary layer. AIAA Journ., Vol.25, No.1, pp.35–42.Google Scholar
  143. Driver, D.M. & Hebbar, S.K. (1989) Three-dimensional shear-driven boundary layer flow. AIAA Journ., Vol. 27, No.12, pp.1689–1697.Google Scholar
  144. Driver, D.M. & Johnston, J.P. (1990) Experimental study of a three-dimensional shear-driven turbulent boundary layer with stream wise adverse pressure gradient. NASA TM102211. Google Scholar
  145. Driver, D.M. & Seegmiller, H.L. (1985) Features of a reattaching turbulent shear layer in divergent channel flow. AIAA Journ., Vol.23, pp.163–171.Google Scholar
  146. Durbin, P.A. (1993) On modeling three-dimensional turbulent wall layers. Phys. Fluids, Vol.A5, No.5, pp.1231–1238.Google Scholar
  147. Durbin, P.A. & Belcher, S.E. (1992) Scaling of adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech., Vol.238, pp.699–722.MATHGoogle Scholar
  148. Dvorak, F.A. (1969) Calculation of turbulent boundary layers on rough surfaces in pressure gradient, AIAA Journ. Vol.7, No.9, pp.1752–1759.Google Scholar
  149. East, L.F. & Hoxey, R.P. (1969) Low-speed three-dimensional turbulent boundary layer data. ARC R &.M 3653. Google Scholar
  150. East, L.F., Smith, P.D. & Merryman, P.J. (1977) Prediction of the development of separated boundary layer by the lag-entrainment method. RAE TR 77046. Google Scholar
  151. East, L.F. & Sawyer, W.G. (1979) An investigation of the structure of equilibrium boundary layers. In Turbulent boundary layers: experiment Theory and Modelling, AGARD CP-271, pp.6–1, 19.Google Scholar
  152. Eaton, J.K. (1991) Turbulence structure and heat transfer in three-dimensional turbulent boundary layer data. Proc.9th. Symp. Energy Engng. Sci. Argonne Nat. lab.Google Scholar
  153. Elder, J.W. (1960) An experimental investigation of turbulent spots and breakdown to turbulence. J. Fluid Mech., Vol.9, Vol.9, pp.235–246.MATHGoogle Scholar
  154. Elena, L. & Schiestel, R. (1994) Turbulence modeling of confined flow in rotating disk systems. AIAA Journ., Vol.33, pp.812–821.Google Scholar
  155. Elena, L. & Schiestel, R. (1996) Turbulence modeling of rotating confined flows. Int. J. Heat Fluid Flow, Vol.17, pp.283–289.Google Scholar
  156. Ellis, L.B. & Joubert, P.N. (1976) Turbulent shear flow in a curved duct. J. Fluid Mech., Vol.62, Pt.1, pp.65–84.Google Scholar
  157. Elsenaar, A. & Boelsma, S.H. (1974) Measurements of the Reynolds-stress tensor in a three-dimensional turbulent boundary layer under infinite swept wing conditions. NLR TR 74095V. Google Scholar
  158. Enayet, M.M., Gibson, M.M., Taylor, A.M.K.P. & Yanneskis, M. (1982). Laser-Doppler measurements of laminar and turbulent flow in a pipe bend. Int. J. Heat Fluid Flow, Vol.3, pp.213–219.Google Scholar
  159. Erian, F.F. & Tong, Y.H. (1971) Turbulent flow due to a rotating disk. Phys. Fluids, Vol.14, No.12, pp.2588–2591.Google Scholar
  160. Erm, L.P., Smits, A.J. & Joubert, P.N. (1987) Low-Reynolds-number turbulent boundary layers on a smooth flat surface in a zero pressure gradient. In Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W. & Whitelaw, J.H. Turbulent shear flows 5, pp.186–196. Springer Verlag.Google Scholar
  161. Eskinazi, S. & Yeh, H. (1956) Fully developed turbulence in a curved channel. J. Aero. Sci., Vol.23, pp.23–35 .MATHGoogle Scholar
  162. Evans, R.L. (1974) Free-stream turbulence effects on a turbulent boundary layer. ARC CP1282. Google Scholar
  163. Farthing, P.R. & Owen, J.M. (1991) De-swirled radial inflow in a rotating cavity. Int. J. Heat Fluid Flow, Vol.12, No.1, pp.63–70.Google Scholar
  164. Favarolo, S.C., Nejad, A.S. & Ahmed, S.A. (1989) Experimental investigation of isothermal swirling flow in an axisymmetric dump combustor, J. Propulsion, Vol.7, No.3, pp. 348–356.Google Scholar
  165. Fendell, F.E. (1972) Singular perturbation and turbulent shear flow near walls, J. Astronaut. Sci., Vol.20, No.3, pp.129–165.Google Scholar
  166. Fernholz, H. (1964) Halbempirische Gesetze zur Berechnung turbulenter Grenzschichten nach der Methods der Integralbedingungen. Ing. Archiv, Vol.33, pp.384–395.Google Scholar
  167. Fernholz, H.H., Krause, E., Nockemann, M. & Schober, M. (1995) Comparative measurements in the canonical boundary layer at Ree ≤ 6×104 on the wall of the DNW. Phys. Fluids, Vol.A7, pp. 1275–1281.Google Scholar
  168. Fernholz, H.H. & Vagt, J.D. (1981) Turbulence measurements in an adverse-pressure-gradient three-dimensional turbulent boundary layer along a circular cylinder. J. Fluid Mech., Vol.111, pp.233–269.Google Scholar
  169. Fiedler, H. & Head, M.R. (1966) Intermittency measurements in the turbulent boundary layers. J. Fluid Mech., Vol.25, Pt.4, pp.719–735.Google Scholar
  170. Firouzian, M., Owen, J.M., Pincombe, J.R. & Rogers, R.H. (1985) Flow and heat transfer in a rotating cavity witha radial inflow of fluid. Part 1: the flow structure. Int. J. Heat Fluid Flow, Vol.6, p.228.Google Scholar
  171. Flack, K.A. & Johnston, J.P. (1994) Near-wall flow in a three-dimensional turbulent boundary layer on the end wall of a rectangular bend. AIAA Paper 94–0405, 32nd. Aerosp. Sci. Meeting, Reno, NV.Google Scholar
  172. Fox, R.W. & Kline, S.J. (1962) Flow régimes in curved subsonic diffusers. Trans. ASME, Journ. Basic Eng., Ser.D, Vol.84, pp.303–312.Google Scholar
  173. Frei, D. & Thomann, H. (1980) Direct measurements of skin friction in a turbulent boundary layer witha strong adverse pressure gradient. J. Fluid Mech., Vol.101, pp.79–95.Google Scholar
  174. Fu, S., Huang, P.G., Launder, B.E. & Leschziner, M.A. (1988) A comparison of algebraic and differential second-moment closures for axisymmetric turbulent shear flows with and without swirl. J. Fluids Engng. Trans. ASME, Vol.110, pp.216–221.Google Scholar
  175. Fu, T.C., Shekarriz, A., Katz, J. & Huang, T.T. (1994) The flow structure in the lee of an inclined 6:1 prolate spheroid. J. Fluid Mech. Vol.269, pp.79–106.Google Scholar
  176. Fulachier, L., Arzoumanian, E. & Dumas, R. (1982) Effect on a developed turbulent boundary layer of a sudden local wall motion. Proc. IUTAM Symp. Three-dimensional Turbulent Boundary Layers, pp.188–198. Fernholz, H.H. & Krause, E. (Eds.), Springer Verlag, BerlinGoogle Scholar
  177. Furuya, Y., Nakamura, I., Yamashita, S. & Ishii, T. (1977) Experimental investigation of the relatively thick turbulent boundary Layer on a rotating cylinder in axial flows (2nd. Report, Flows under pressure gradients) Bull. JSME, Vol.20, No.140; pp.191–200.Google Scholar
  178. Galbraith, R.A.McD. & Head, M.R. (1975) Eddy viscosity and mixing length from measured boundary layer developments. Aero. Quarterly, Vol. 26, pt.2, pp. 133–154 .Google Scholar
  179. Gan, X., Kilic, M. & Owen, J.M. (1993) Flow between contrarotating discs. ASME Paper 93-GT-286. Int. Gas Turbine Aeroeng. Congr., Cincinnati.Google Scholar
  180. Gan, X., Kilic, M. & Owen, J.M.(1994) Superposed flow between two disks contrarotating at differential speeds. IntJ. Heat Fluid Flow, Vol.15, No.6, pp.438–446.Google Scholar
  181. Gartshore, I.S., Durbin, P.A. & Hunt, J.C.R. (1983) The production of turbulent stress in a shear flow by irrotational fluctuations. J. Fluid Mech., Vol.137, pp.307–329.Google Scholar
  182. Gavrilakis, S. (1992) Numerical simulation of low Reynolds number turbulent flow through a straight square duct. J. Fluid Mech., Vol.244, pp.101–129.Google Scholar
  183. George, W.K. & Castillo, L. (1993) Boundary layers with pressure gradient: another look at the equilibrium boundary layer. In So, R.M.C., Speziale, C.G. & Launder, B.E. (Eds.) Near-Wall Turbulent Flows, pp.901–910 Elsevier.Google Scholar
  184. Gessner, F.B. (1973) The origin of secondary flow in turbulent flow along a corner. J. Fluid Mech., Vol.58, p.1.Google Scholar
  185. Gessner, F.B. & Emery, A.F. (1976) A Reynolds-stress model for turbulent corner flows — Part 1, Development of the model, Trans. ASME I, J. Fluids Eng., Vol.98, pp.261–268.Google Scholar
  186. Gessner, F.B. & Emery, A.F. (1981) The numerical prediction of developing flow in rectangular ducts. Trans. ASME I, J. Fluids Eng., Vol.103, pp.445–455.Google Scholar
  187. Gessner, F.B. & Jones, J.B. (1965) On some aspects of fully-developed turbulent flow in rectangular channels, J. Fluid Mech., Vol.23, Part 4, pp.689–713.Google Scholar
  188. Gessner, F.B. & Po, P.K. (1976) A Reynolds-stress model for turbulent corner flows — Part 2, Comparison between theory and experiments, Trans. ASME I, J. Fluids Eng., Vol.98, pp.269–277.Google Scholar
  189. Gessner, F.B., Po, J.K. & Emery, A.F. (1979) Measurements of developing turbulent flow in a square duct. In Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J.H. (Eds.) Turbulent Shear Flows. Vol.1, pp.119–136. Lect. Notes in Phys. Springer Verlag.Google Scholar
  190. Ghose, S. & Kline, S.J. (1978) Prediction of transitory stall in two-dimensional diffusers, Trans. ASME, Journ. Fluids Eng., Vol.100, pp.419–426.Google Scholar
  191. Gibson, M.M. (1978) An algebraic stress and heat flux model for turbulent shear flow with stream wise curvature. Int. J. Heat Mass Transfer, Vol.21, pp.1609–1617.MathSciNetMATHGoogle Scholar
  192. Gibson, M.M.(1985) Effects of streamline curvature on turbulence. In Le Penven, L., Gence, J.N. & Comte-Bellot, G. In Davis, S.H. & Lumley, J.L. (Eds.) Frontiers in Fluid Mechanics, pp.184–198. Springer Verlag, Berlin.Google Scholar
  193. Gibson, M.M., Jones, W.P. & Younis, B.A. (1981) Calculation of turbulent boundary layers on curved surfaces, Phys. Fluids, Vol.24, pp.386–395.MATHGoogle Scholar
  194. Gibson, M.M. & Launder, B.E. (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech., Vol.86, part 3, pp.491–511.MATHGoogle Scholar
  195. Gibson, MM., Verriopoulos, C.A. & Vlachos, N.S. (1984) Turbulent boundary layer on a mildly convex surface: Mean flow and turbulence measurements. I- Mean-flow and turbulence measurements. Exp. Fluids, Vol.2, pp. 17–24.Google Scholar
  196. Gibson, M.M. & Younis, B.A. (1986) Calculation of swirling jets with a Reynolds-stress closure. Phys. Fluids, Vol.29, No.1, pp.38–48.Google Scholar
  197. Gillis, J.C. & Johnston, J.P. (1983) Turbulent boundary-layer flow and structure on a convex wall and its redevelopment on a flat wall. J. Fluid Mech., Vol.135, pp. 123–153.Google Scholar
  198. Goldberg, U. & Reshotko, E. (1984) Scaling and modeling of three-dimensional pressure-driven turbulent boundary layers. AIAA Journ., Vol.22, pp.914–920.MATHGoogle Scholar
  199. Goldstein, S. (1935) On the resistance to the rotation of a rotating disk immersed in a fluid. Proc. Camb. Phil. Soc., Vol.31, p.232.MATHGoogle Scholar
  200. Goldstein, S. (1936) A note on roughness. Aero. Res. Council, R&M, 1763. Google Scholar
  201. Graber, DJ., Daniels, W.A. & Johnson, B.V. (1987) Disk pumping test. AFWAL-TR-87–2050, Wright Patterson Air Force Base, OH, USA.Google Scholar
  202. Grabow, R.M. & White, C.O. (1975) Surface roughness effects on nose-tip ablation characteristics. AIAA Journ., Vol.13, No.5, pp.605–609.Google Scholar
  203. Granville, P.S. (1986) Eddy viscosities and mixing lengths for turbulent boundary layers on flat plates, smooth or rough. DTNSRDC Rep. 86/067. Google Scholar
  204. Granville, P.S. (1987a) Baldwin-Lomax factors for turbulent boundary layers in pressure gradients. AIAA Journ., Vol. 25, No.12, pp.1624–1627.Google Scholar
  205. Granville, P. (1987b) Mixing lengths or eddy viscosities for thick axisymmetric turbulent boundary layers near a wall. J. Ship Research, Vol.31, No.3, pp.207–216.MathSciNetGoogle Scholar
  206. Grass, A.J. (1971) Structural features of turbulent flow over smooth and rough surfaces, J. Fluid Mech., Vol.50, Part 2, pp.233–255.Google Scholar
  207. Green, J.E. (1973) On the influence of freestream turbulence on a turbulent boundary layer as it relates to wind-tunnel testing at subsonic speeds. AG ARD Rept. 602, pp.4–1 to 4–8 .Google Scholar
  208. Gregory, N., Stuart, J.T. & Walker, W.S. (1955) On the stability of three-dimensional boundary layers with applications to a flow due to a rotating disk. Phil. Trans. Roy. Soc. London, Vol.A248, pp.155–199 .MathSciNetGoogle Scholar
  209. Gupta, A.K. & Kaplan, R.E. (1972) Statistical characteristics of Reynolds stress in a turbulent boundary layer, Phys. Fluids, Vol.15, pp.981–985.Google Scholar
  210. Habib, M.A. & Whitelaw, J.H. (1979) Velocity characteristic of a confined coaxial jet. Trans. ASME, J. Fluids Eng., Vol.101, pp.521–529.Google Scholar
  211. Hama, F.R. (1954) Boundary layer characteristics for smooth and rough surfaces. Trans. Soc. Naval Arch. Marine Eng., Vol.62, pp.353–358.Google Scholar
  212. Hancock, P.E. & Bradshaw, P. (1983) The effect of free-stream turbulence on turbulent boundary layers. Trans. ASME, J. Fluids Eng., Vol.105, pp.284–289.Google Scholar
  213. Hancock, P.E. & Bradshaw, P. (1989) Turbulence structure of a boundary layer beneath a turbulent free stream. J. Fluid Mech., Vol. 205, pp.45–76.Google Scholar
  214. Hanjalic, K. & Launder, B.E. (1972) A Reynolds-stress model for turbulence and its application to thin shear flows. J. Fluid Mech., Vol.52, pp.491–511.Google Scholar
  215. Hanjalic, K. & Launder, B.E. (1976) Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence, J. Fluid Mech., Vol.74, pp.593–610.MATHGoogle Scholar
  216. Hanjalic, K., Jakirlic, S. & Durst, F. (1994) A computational study of joint effects of transverse shear and streamwise acceleration on the three-dimensional boundary layers. Int. J. Heat Fluid Flow, Vol.15, No.4, pp.269–282.Google Scholar
  217. Hawthorne, W.R. (1951) Secondary circulation in fluid flow. Proc. Roy. Soc. London, Vol.A206, pp.374–387.MathSciNetGoogle Scholar
  218. Head, M.R. (1976a) Equilibrium and near-equilibrium turbulent boundary layers. J. Fluid Mech., Vol.73, pp.1–8.Google Scholar
  219. Head, M.R.(1976b) Eddy viscosity in turbulent boundary layers, Aero. Quarterly, Vol.27, pp.270–275.Google Scholar
  220. Head, M.R. & Bradshaw, P. (1971) Zero and negative entrainment in turbulent shear flow, J. Fluid Mech., Vol.46, pp.385–394.Google Scholar
  221. Head, M.R. & Galbraith, R.A.McD. (1975) Eddy viscosity and entrainment in equilibrium boundary layers. Aero. Quarterly, Vol.26, pp.229–242.Google Scholar
  222. Head, M.R. & Prahlad, T.S.(1974) The boundary layer on a plane of symmetry, Aeron. Quarterly, Vol.25, pp.293–304.Google Scholar
  223. Healzer, J.M., Moffat, R.J. & Kays, W.M. (1974) The turbulent boundary layer on a porous rough plate: experimental heat transfer with uniform blowing. AIAA Paper 74–680, ASME Paper 74-HT-14, AIAA/ASME Thermophysics and Heat Transfer Conf., Boston, Mass. See also Report HMT-18 Thermosci. Div., DeptmL Mech. Engng., Stanford Univ., CA.Google Scholar
  224. Hebbar, K.S. & Melnik, W.L. (1978) Wall region of a relaxing three-dimensional incompressible turbulent boundary layer. J. Fluid Mech., Vol.85, pp.33–56.Google Scholar
  225. Henbest, S.M. (1983) The structure of turbulent pipe flow. PhD Thesis, Univ. Melbourne, Australia.Google Scholar
  226. Herring, H J. & Norbury, J.F. (1967) Some experiments on equilibrium turbulent boundary layers in favourable pressure gradients, J. Fluid Mech., Vol.27, Pt.3, pp.541–549 .Google Scholar
  227. Higuchi, H. & Rubesin, M.W. (1979) Behavior of a turbulent boundary layer subjected to sudden transverse strain, AIAA Journ., Vol. 17, No.9, pp.931–941.MATHGoogle Scholar
  228. Hill, P.G. & Moon, I.M. (1962) Effects of Coriolis on the turbulent boundary layer in rotating fluid machines. MIT Gas Turbine Lab. Report, No.69.Google Scholar
  229. Hillier (1976) CERL Report RD/L/N242/75.Google Scholar
  230. Hillier, R. & Cherry, N.J. (1981) The effects of stream turbulence on separation bubbles. J. Wind Eng. Ind. Aerod. Vol.8, pp.49–58.Google Scholar
  231. Hinze, J.O. (1975) Turbulence, McGraw-Hill.Google Scholar
  232. Hirai, S., Takagi, T. & Matsumoto, M. (1988) Prediction of the laminarization phenomena in an axially rotating pipe flow. Trans. ASME, Journ. Fluids Engng., Vol.110, pp.424–430.Google Scholar
  233. Hirt, F. & Thomann, H. (1986) Measurement of wall shear stress in turbulent boundary layers subject to strong pressure gradients. J. Fluid Mech., Vol.171, pp.547–562.Google Scholar
  234. Hoffmann, P.H. & Bradshaw, P. (1978) Turbulent boundary layers on surfaces of mild longitudinal curvature. Depmt.Aeron., Imperial College, London, IC Aero. Report 78–04. Google Scholar
  235. Hoffmann, J.A. & Mohammadi, K. (1991) Velocity profiles for turbulent boundary layers under freestream turbulence. Trans. ASME, Journ. Fluids Engng., Vol.113, pp.399–404.Google Scholar
  236. Hoffmann, P.H., Muck, K.C. & Bradshaw, P. (1985) The effect of concave surface curvature on turbulent boundary layers, J. Fluid Mech., Vol.161, pp.371–403.Google Scholar
  237. Hogg, S. & Leschziner, M.A. (1989a) Computation of highly swirling confined flow with a Reynolds stress turbulence model. AIAA Journ., Vol.27, No.1, pp.57–63.Google Scholar
  238. Hogg, S. & Leschziner, M.A. (1989b) Second-moment closure calculation of strongly swirling confined flow with large density variations. IntJ. Heat Fluid Flow, Vol.10, pp.16.Google Scholar
  239. Holloway, A.G.L. & Gupta, R. (1993) The influence of linear mechanisms during the adjustment of sheared turbulence to flow curvature. Phys. Fluids, Vol. A5, No.12, pp.3197–3206.Google Scholar
  240. Holloway, A.G.L. & Tavoularis, S. (1992) The effects of curvature on sheared turbulence. J. Fluid Mech., Vol.237, pp.569–603.Google Scholar
  241. Hooper, J.D. & Harris, R.W. (1982) Austral. Atomic Energy Commission Report No.E516.Google Scholar
  242. Hornung, H.G. & Joubert, P.N. (1963) The mean velocity in three-dimensional turbulent boundary layers. J. Fluid Mech., Vol. 15, pt.3, pp.368–384.MATHGoogle Scholar
  243. Huang, P.G. & Bradshaw, P. (1995) Law of the wall for turbulent flows in pressure gradients. AIAA Journ., Vol.33, No.4, pp.624–632.MATHGoogle Scholar
  244. Huffman, G.D., Zimmerman, D.R. & Bennett, W.A. (1972) The effect of free-stream turbulence level on turbulent boundary-layer behaviour. AGARD CP 164, pp.91–115.Google Scholar
  245. Humphrey, J.A.C., Taylor, A.K.M.P. & Whitelaw, J.H. (1977) Laminar flow in a square duct of strong curvature. J. Fluid Mech., Vol.53, p.509.Google Scholar
  246. Humphrey, J.A., Whitelaw, J.H. & Yee, G. (1981) Turbulent flow in a square duct with strong curvature, J. Fluid Mech., Vol.103, pp.443–463.Google Scholar
  247. Hunt, J.C.R. & Joubert, P.N. (1979) Effects of small streamline curvature on turbulent duct flow. J. Fluid Mech., Vol.91, Part 4, pp.633–659.Google Scholar
  248. Huser, A. & Biringen, S. (1993) Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech., Vol. 257, pp.65–95.MATHGoogle Scholar
  249. Lacovides, H. & Chew, J.W. (1993) Computation of convective heat transfer in rotating cavities. Int. J. Heat Fluid Flow, Vol.14, No.2, pp.146–154.Google Scholar
  250. Lacovides, H., Launder, B.E. & Li, H.Y. (1996) The computation of flow development through stationary and rotating U-ducts of strong curvature. Int. J. Heat Fluid Flow, Vol.17, pp.22–33.Google Scholar
  251. Lacovides, H., Launder, B.E., Loizou, P.A. & Zhao, H.H. (1990) Turbulent boundary-layer development around a square-sectioned U-bend: measurements and computations. Trans. ASME, J. Fluids Eng., Vol.112, pp.409–415.Google Scholar
  252. Lacovides, H. & Theophanopoulos, LP. (1991) Turbulence modelling of axisymmetric flow inside rotating cavities. Int. J. Heat Fluid Flow, Vol.12, pp.2–11.Google Scholar
  253. Lacovides, H. & Launder, B.E. (1995) Computational fluid dynamics applied to internal gas-turbine blade cooling: a review. IntJ. Heat Fluid Flow, Vol.16, pp.454–470.Google Scholar
  254. Imao, S., Itoh, M. & Harada, T. (1996) Turbulent characteristics of the flow in an axially rotating pipe. Int. J. Heat Fluid Flow, Vol.17, pp.444–451.Google Scholar
  255. Ince, N.Z. & Launder, B.E. (1995) Three-dimensional and heat-loss effects on turbulent flow in a nominally tow-dimensional cavity. Int. J. Heat Fluid Flow, Vol.16, pp.171–177.Google Scholar
  256. Inman, P.N. & Bradshaw, P. (1981) Mixing length in low Reynolds number, low speed turbulent boundary layers. AIAA Journ., Vol.19, pp.653–655.Google Scholar
  257. Ioselevich, V.A. & Pilipenko, V.I. (1974) Logarithmic velocity profile for flow of a weak polymer solution near a rough surface. Sov. Phys. Dokl., Vol.18, p.790.Google Scholar
  258. Itoh, M. & Hasegawa, I. (1994) Turbulent boundary layer on a rotating disk in infinite quiescent fluid. JSME international J., Ser.B, Vol.37, No.3, pp.449–456.Google Scholar
  259. Itoh, M., Yamada, Y., Imao, S. & Gouda, M. (1990) Experiments on turbulent flow due to an enclosed rotating disk. Proc. 1st. Symp. Engineering Turbulence Modeling and Measurements (Rodi, W. & Ganic, E.N. Eds.) Elsevier, New York, pp.659–668.Google Scholar
  260. Jeans, A.H. & Johnston, J.P. (1982) The effects of concave curvature on turbulent boundary layer structure. Rep. MD-40, Thermosci. Div. Mech. Eng., Stanford Univ., Stanford, CA.Google Scholar
  261. Johnson, J.P. & Flack, K.A. (1996) Review — Advances in three-dimensional boundary layers with emphasis on the wall-layer regions. Trans. ASME, Journ. Fluids Eng., Vol.118, pp.219–230.Google Scholar
  262. Johnson, P.L. & Johnston, J. (1989) Active and inactive motions in a turbulent boundary layer — interactions with freestream turbulence. Proc. 7th. Symp. Turbulent Shear Flows, pp.20.2.1–6. Stanford Univ.Google Scholar
  263. Johnson, R.W. & Launder, B.E. (1985) Local Nusselt number and temperature field in turbulent flow through a heated square sectioned U-bend. Int. J. Heat Fluid Flow, Vol.6, pp.177.Google Scholar
  264. Johnston, J.P. (1960) On the three-dimensional turbulent boundary layer generated by secondary flow, Trans. ASME D, J. Basic Eng., Vol.82, No.3, pp.233–248.Google Scholar
  265. Johnston, J.P. (1970) Measurements in a three-dimensional turbulent boundary layer induced by a swept, forward-facing step. J. Fluid Mech., Vol.42, Pt.4, pp.823–844.Google Scholar
  266. Johnston, J.P. (1976) Internal Rows. In Bradshaw (Ed.) Turbulence, Topics in Appl. Physics, Vol.19, Springer Verlag.Google Scholar
  267. Johnston, J.P. Halleen, R.M. & Lezius, D.K. (1972) Effects of span wise rotation on the structure of the two-dimensional fully-developed turbulent channel flow, J. Fluid Mech., Vol.56, Part 3, pp.533–588.Google Scholar
  268. Jones, O.C. (1976) An improvement in the calculation of turbulent friction in rectangular ducts. Trans. ASME, J. Fluids Eng., Vol., pp.173–181.Google Scholar
  269. Jones, W.P. & Launder, B.E. (1972a) The prediction of laminarization with a two-equation model, Int. J. Heat Mass Transfer, Vol.15, pp.301–314.Google Scholar
  270. Jones, W.P. & Launder, B.E. (1972b) Some properties of sink-flow turbulent boundary layers. J. Fluid Mech., Vol.56, Part 2, pp.337–351.Google Scholar
  271. Jones, W.P. & Launder, B.E. (1973) The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, Vol.16, pp.1119–1130.Google Scholar
  272. Jones, W.P. & Pascau, A. (1989) Calculation of confined swirling flows with a second-moment closure. Trans. ASME, J. Fluids Eng., Vol.111, pp.248–255.Google Scholar
  273. Kader, B.A. & Yaglom, A.M. (1978) Similarity treatment of moving-equilibrium turbulent boundary layers in adverse pressure gradient. J. Fluid Mech., Vol.89, Pt.2, pp.305–342.MathSciNetGoogle Scholar
  274. Kawamura, H. & Mishima, T. (1991) Numerical prediction of turbulent swirling flow in a rotating pipe by a two-equation model of turbulence (fully developed swirling flow). Trans. JSME, Vol.57 (536B), pp.1251–1256 (in Japanese).Google Scholar
  275. Keith, W.L. & Bennett, J.C. (1991) Low frequency spectra of the wall shear stress and wall pressure in a turbulent boundary layer. AIAA Journ., Vol. 29, pp.523–530.Google Scholar
  276. Khodadadi, J.M. & Vlachos, N.S. (1990) Effects of turbulence model constants on computation of confined swirling flows. AIAA Journ., Vol.28, pp.750–752.Google Scholar
  277. Kikuyama, K., Murakami, M. & Nishibori, K. (1983) Development of three-dimensional turbulent boundary layer in an axially rotating pipe. Trans. ASME, J. Fluids Eng., Vol.105, No.2, pp.154–160.Google Scholar
  278. Kim, J. (1983) The effect of rotation on turbulence structure. In Proc. 4th. Symp. Turbulent Shear Flows, pp.6.14/19; Karlsruhe, Germany.Google Scholar
  279. Kim, K.Y. & Chung, M.K. (1988) Calculation of a strongly swirling turbulent round jet with recirculation by an algebraic stress model. Int.J.Meat Fluid Flow, Vol.9, No.1, pp.62–68.Google Scholar
  280. Kim, J., Moin, P. & Moser, R.D. (1987) Turbulence statistics in fully-developed channel flow at low Reynolds number, J. Fluid Mech. Vol.177, pp.133–166.MATHGoogle Scholar
  281. Kim, W.J. & Patel, V.C. (1994) Origin and decay of longitudinal vortices in developing flow in a curved rectangular duct. Trans. ASME, Journ. Fluids Engng., Vol.116, pp.45–52.Google Scholar
  282. Kitchens, C.W Jr., Gerber, N. & Sedney, R. (1975) Computational implications of the zone of dependence concept for three-dimensional boundary layers on a spinning body. USA Ballistic Res. Labs. Rept. No.1774. Aberdeen Proving Grounds, Maryland.Google Scholar
  283. Kitoh, O. (1991) Experimental study of turbulent swirling flow in a straight pipe. Journ. Fluid Mech., Vol. 225, pp.445–479.Google Scholar
  284. Kiya, M., Sasaki, K. & Arie, M. (1984) Bull. JSME, Vol.50, pp.967–973 (in Japanese)Google Scholar
  285. Klebanoff, P.S. (1954) Characteristics of turbulence in a boundary layer with zero pressure gradient. NASA TN 3178. Google Scholar
  286. Klebanoff, P.S. (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rept.1247. Google Scholar
  287. Klein, D. (1977) Pressure measurements and flow visualization over roughness elements. PhD Thesis, Univ. Missouri, Columbia.Google Scholar
  288. Kline, S.J., Bardina, J.G. & Strawn, R.C. (1983) Correlation of the detachment of two-dimensional boundary layers, AIAA Journ., Vol.21, pp.68–73.Google Scholar
  289. Kline, S.J., Cantwell, B.J. & Lilley, G.M., Eds. (1981) Complex Turbulent Flows. 1980–1981AFOSR-HTTM-Stanford Conf. on Turbulent Flows. Stanford University.Google Scholar
  290. Knight, D.W. & Patel, H.S. (1985) Boundary shear in smooth rectangular ducts. JMydraulics Eng. ASCE, Vol.111, pp.29–47.Google Scholar
  291. Kobayashi, R., Maekawa, H. & Uchiyama, K. (1995) Turbulent flow accompanied by Taylor-Görtler vortices in a two-dimensional curved channel. Flow Meas. Instrum., Vol.6, pp.93–100.Google Scholar
  292. Kobayashi, M., Maekawa, H., Shimizu, Y. & Uchiyama, K. (1994) Experimental study on turbulent flow in two-dimensional curved channel (Space/time correlations and spectra of velocity fluctuations). JSME Internat. J. Ser.B, Vol.37, No.1, pp.38–46.Google Scholar
  293. Kobayashi, R. & Fujisawa, N. (1982) Turbulence characteristics of plane wall jets. Rep. Inst. High Speed Mech. Tohoku Univ., Vol.45, pp.95–114, Tohoku, Japan.Google Scholar
  294. Kobayashi, R. & Fujisawa, N. (1983a) Curvature effects on two-dimensional turbulent wall jets. Ing. Arch., Vol.53, pp.409–417.Google Scholar
  295. Kobayashi, R. & Fujisawa, N. (1983b) Curvature effects on two-dimensional turbulent wall jets along concave surfaces. Bull. JSME, Vol.26, No.222, pp.2074–2080.Google Scholar
  296. Kobayashi, R. & Fujisawa, N. (1983c) Turbulence measurements in wall jets along strongly concave surfaces. Acta Meccanica, Vol.47, pp.39–52.Google Scholar
  297. Kobayashi, R., Kohama, Y. & Takamadate, Ch. (1980) Spiral vortices in boundary layer transition régime on a rotating disk. Acta Meccanica, Vol.35, pp.71–82.MATHGoogle Scholar
  298. Kobayashi, T. & Yoda, M. (1987) Modified K-e model for turbulent swirling flow in a straight pipe. JSME Int. J., Vol.30, No.259, pp.66–71.Google Scholar
  299. Kohama, Y. (1987) Crossflow instability in rotating disk boundary layer. AIAA Paper 87–1340. Google Scholar
  300. Koloseus, H.J. & Davidian, J. (1966) Free-surface instability correlations and roughness concentration effects on flow over hydrodynamically-rough surfaces. USGS Water Supply Paper 1592C.Google Scholar
  301. Koyama, H., Masuda, S., Ariga, I. & Watanabe, I. (1979) Stabilizing and destabilizing effects of Coriolis force on two-dimensional laminar and turbulent boundary layers, TransASME A, J. Eng. Power, Vol.101, pp.23–31.Google Scholar
  302. Kreith, F. (1955) The influence of curvature on heat transfer to incompressible fluids. Trans. ASME, J. Fluids Eng., Vol.33, No.11, pp.1247–1256.Google Scholar
  303. Kreplin, H.P.., Vollmers, H. & Meier, H.U. (1982) Measurements of the wall shear stress on a prolate spheroid. Z. Flugwiss. Weltraumforsch., Vol.6, Pt.4, pp.248–252.Google Scholar
  304. Kristoffersen, R. & Andersson, H.I. (1993) Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech., Vol. 256, pp.163–197.MATHGoogle Scholar
  305. Krogstad, P.(1991) Modifications of Van-Driest damping function to include the effects of surface roughness. AIAA Journ., Vol.29, No.6, pp.888–894.Google Scholar
  306. Krogstad, P.A. & Antonia, R.A. (1994) Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech., Vol. 277, pp.1–21 .Google Scholar
  307. Krogstad, P.A., Antonia, R.A. & Browne, L.W.B. (1992) Comparison between rough- and smooth-wall turbulent boundary layers. J. Fluid Mech., Vol.245, pp.599–617.Google Scholar
  308. Krogstad, P.A. & Skare, P.E. Influence of a strong adverse pressure gradient on the turbulent structure in a bounbary layer. Phys. Fluids, Vol.7, No.8, pp.2014–2024.Google Scholar
  309. Lakshminarayana, B. (1986) Turbulence modelling for complex shear flows. AIAA Journ., Vol.24, No.12, pp.1900–1917 .Google Scholar
  310. Lam, C.K.G. & Bremhorst, K.A. (1981) Modified form of the k-e model for predicting wall turbulence. Trans. ASME I, J. Fluids Eng., Vol.103, pp.456–460.Google Scholar
  311. Laufer, J. (1954) The structure of turbulence in fully developed pipe flow. NACA Report 1174.Google Scholar
  312. Launder, B.E., Priddin, CH. & Sharma, B.I. (1977) The calculation of turbulent boundary layers on spinning and curved surfaces, Trans. ASME, J. Fluids Eng., Vol.99, No.1, pp.237–239.Google Scholar
  313. Launder, B.L., Reece, G.J. & Rodi, W. (1975) Progress in the development of a Reynolds-stress closure, J. Fluid Mech., Vol.68, pp.537–566.MATHGoogle Scholar
  314. Launder, B.E. & Sharma, B.I. (1974) Application of the energy dissipation model; of turbulence to the calculation of flow near a spinning disk. Letters in Heat Mass Transfer, Vol.1, pp. 131–138.Google Scholar
  315. Launder, B.E. & Shima, N. (1989) Second-moment closure for the near-wall sublayer: development and application. AIAA Journ., Vol.27, pp.537–566.Google Scholar
  316. Launder, B.E. & Tselepidakis, D.P.(1990) Contribution to the second-order modeling of sublayer turbulent transport. In Kline, S.J. & Agfan, N.H. (Eds.) Near-wall Turbulence : 1988 Zoran Zaric Memorial Conf. p.818. Hemisphere Publ. Company, New York.Google Scholar
  317. Launder, B.E. & Tselepidakis, D.P. (1994) Application of a new second-moment closure to turbulent channel flow rotating in orthogonal mode. Int. J. Heat Fluid flow, Vol.15, No.1, pp.2–10.Google Scholar
  318. Launder, B.E. & Ying, W.G. (1972) Secondary flows in ducts of square cross-section, J.Fluid Mech., Vol.54, Part 2, pp.289–295.Google Scholar
  319. Launder, B.E. & Ying, W.M. (1973) Prediction of flow an heat transfer in ducts of square crosssection, Heat &Fluid flow, Vol.3, pp.115. See also Proc. Inst. Mech. Eng. Vol.187, pp.455–461.Google Scholar
  320. Lawn, CJ. (1971) The determination of the rate of dissipation in turbulent pipe flow. J. Fluid Mech., Vol.48, Part 3, pp.477–505.Google Scholar
  321. Leschziner, M.A. & Rodi, W. (1981) Calculation of annular and twin parallel jets using various discretization schemes and turbulence-model variations. Trans. ASME, J. Fluids Eng., Vol.103, No.2, pp.352–360 .Google Scholar
  322. Leschziner, M.A. & Rodi, W. (1984) Computation of strongly swirling axisymmetric free jets. AIAA Journ., Vol.22, No.11, pp.1742–1747.MATHGoogle Scholar
  323. Leutheusser, H.J. (1963) Turbulent flow in rectangular ducts. J. Hydraul. Div. ASCE, Vol. HY3, pp. 1–19 .Google Scholar
  324. Li, H. & Tomita, Y. (1994) Characteristics of swirling flow in a circular pipe. Trans. ASME, Journ. Fluids Eng., Vol.116, pp.370–373.Google Scholar
  325. Lian, Q.X. (1991) A visual study of the coherent structure of turbulent boundary layer in flow with adverse pressure gradient. J. Fluid Mech., Vol.215, pp.101–124.Google Scholar
  326. Liebeck, R.H. (1978) Design of subsonic airfoils for high lift, Jourrn. Aircraft, Vol.15, pp.547–561.Google Scholar
  327. Lighthill, J. (1963) Boundary layer theory, In Rosenhead, L. (Ed.) Theory of Laminar Flows, Oxford at the Clarendon Press.Google Scholar
  328. Ligrani, P.M. & Moffat, R.J. (1986) Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech., Vol.162, pp.69–98.MathSciNetGoogle Scholar
  329. Ligrani, P.M., Moffat, R J. & Kays, W.M. (1983) Artificially thickened turbulent boundary layers for studying heat transfer and skin friction on rough surfaces. Trans. ASME I, Journ. Fluids Eng., Vol.105, Pt.2, pp. 146–153.Google Scholar
  330. Lilley, D.G. (1977a) Swirl flows in combustion: A review, AIAA Journ., Vol.15, No.8, pp.1063–1078 .Google Scholar
  331. Lilley, D.G. (1977b) Swirling flows in combustion. Progr. Energy Comb. Sci., Vol.3.Google Scholar
  332. Lilley, D.G. (1977c) Nonisotropic turbulence in swirling flows. Acta Astronáutica, Vol.4.Google Scholar
  333. Lin, CK., Miau, J.J., Chen, Q.S., Chou, J.H., Pan, D. & Lin, S.F. (1993) Flow visualization in a circular-to-rectangular transition duct. Int. J. Turbojet Eng., Vol.10, pp.61–74.Google Scholar
  334. Littell, H.S. & Eaton, J.K. (1994) Turbulence characteristics of the boundary layer on a rotating disk. J. Fluid Mech., Vol.266, pp. 175–207.Google Scholar
  335. Liu, CK., Kline, S.J. & Johnston, J.P. (1966) An experimental study of turbulent boundary layers on rough walls. Report MD-15. Thermosci. Div., Deptmt. Mech. Engng., Stanford Univ., CA.Google Scholar
  336. Löfdahl, L., Truong, T.V. & Bruns, L.M. (1995) Measurements of turbulent quantities in a complex three-dimensional boundary layer flow. Exp. Fluids, Vol.18, pp.335–342.Google Scholar
  337. Lohmann, R.P. (1976) The response of developed turbulent boundary layer to local transverse surface motion. Trans. ASME, J. Fluids Eng., Vol.98, No.3, pp.354–361.Google Scholar
  338. Lueptow, R.M. & Haritonidis, J.H. (1987) The structure of the turbulent boundary layer on a cylinder in axial flow. Phys. Fluids, Vol.30, No.10, pp.2993–3005.Google Scholar
  339. Lueptow, R.M. & Leehey, P. (1986) The eddy viscosity in a turbulent boundary layer on a cylinder. Phys. Fluids, Vol.29, No.12, pp.4232–4233.Google Scholar
  340. Lueptow, R.M., Leehey, P. & Stellinger. (1985) The thick turbulent boundary layer on a cylinder: Mean and fluctuating velocities. Phys. Fluids, Vol.28, No.12, pp.3495–3505.Google Scholar
  341. Luxton, R.E., Bull, M.K. & Rajagopalan, S. (1984) The thick turbulent boundary layer on a long fine cylinder in axial flow. Aeron. Journ., Vol.88, No.875, pp.186–199.Google Scholar
  342. Maciejewski, P.K. & Moffat, RJ. (1992) Heat Transfer with very high free-stream turbulence: Part 1, Part II-analysis of results, Trans. ASME, J. Fluids Engng, Vol. 114, pp.827–833 ; pp.834–839.Google Scholar
  343. MacMullin, R., Elrod, W. & Rivir, R. (1989) Free-stream turbulence from a circular wall jet on a flat plate heat transfer and boundary layer flow. Trans. ASME, Journ. Turbomachinery, Vol.111, pp.78–86.Google Scholar
  344. Madavan, N.K., Deutsch, S. & Merkle, C.L. (1985) Measurements of local skin friction in a microbubble-modified turbulent boundary layer. J. Fluid Mech., Vol. 156, pp.237–256.Google Scholar
  345. Madabhushi, R.K. & Vanka, S.P. (1991) Large-eddy simulation of turbulence-driven secondary flow in a square duct. Phys. Fluids, Vol. A3, No.11, pp.2734–2745.Google Scholar
  346. Maitani, T. (1979) A comparison of turbulence statistics in the surface layer over plant canopies with those over several other surfaces. Boundary Layer Met., Vol.17, pp.213–222.Google Scholar
  347. Malecki, P. (1994) Etude de modèles de turbulence pour les couches limites tridimensionnelles. PhD Thesis, ENSAE, Toulouse.Google Scholar
  348. Marchman, J.F. (1987) Journ. Aircraft, Vol.24, pp.107.Google Scholar
  349. Marshall, J.K. (1971) Drag measurements in roughness arrays of varying density and distribution. Agric. Meteorol., Vol.8, pp.262–292.Google Scholar
  350. Mayer, E. (1939) Effect of transition in crosssectional shape on the developmenty of the velocity and pressure distribution of the tyurbulent flow in pipe. NACA TM 903. Google Scholar
  351. Mayle, R.E., Blair, M.F. & Kopper, F.C (1979) Turbulent boundary layer heat transfer on curved surfaces. Trans. ASME C: Journ. Heat Transfer, Vol.101, pp.521.Google Scholar
  352. McDonald, H. (1968) The effect of pressure gradient on the law of the wall in turbulent flow. J. Fluid Mech., Vol. 35, pp.311–336.Google Scholar
  353. McDonald, H. & Kreskovsky, J.P. (1974) Effect of free-stream turbulence on the turbulent boundary layer. Int. J. Heat Mass Transfer, Vol.17, No.7, pp.705–716.Google Scholar
  354. McGuirk, J.J. & Rodi, W. (1977) The calculation of three-dimensional turbulent free jets. Proc. 1st. Turbulent Shear Flows, Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J. (Eds.), pp.71–83. Springer verlag.Google Scholar
  355. Mehta, R.D. & Bradshaw, P. (1988) Longitudinal vortices imbedded in turbulent boundary layers, part 2: vortex pair with ‘common flow’ upwards. J. Fluid Mech., Vol. 188, pp.529–546.Google Scholar
  356. Meier, H.U. & Kreplin, H.P. (1980a) Experimental investigation of the boundary layer transition and separation on a body of révolution. Z. Flugwiss. Weltraumforsch., Vol.4, No.2, pp.65–71.Google Scholar
  357. Meier, H.U. & Kreplin, H.P. (1980b) Influence of free-stream turbulence on boundary-layer development. AIAA Journ., Vol.17, pp.11–15.Google Scholar
  358. Melling, A. & Whitelaw, J.H. (1976) Turbulent flow in a rectangular duct, J. Fluid Mech., Vol.78, Part 2, pp.289–315.Google Scholar
  359. Mellor, G.L. (1966) The effect of pressure gradients on the flow near a smooth wall, J. Fluid Mech., Vol.24, Part 2, pp.255–274.Google Scholar
  360. Mellor, G.L. (1972) The large Reynolds-number asymptotic theory of turbulent boundary layers, int. J. Eng. Sci., Vol.10, pp.851–873.MathSciNetGoogle Scholar
  361. Mellor, G.L. & Gibson, D.M (1966). Equilibrium turbulent boundary layers, Journ. Fluid Mech., Vol.24, Part 2, pp.225–253.Google Scholar
  362. Menna, J.D. & Pierce, FJ. (1988) The mean flow structure around and within a turbulent junction vortex. Part I. The upstream and surrounding three-dimensional boundary layer. Trans. ASME, J. Fluids Eng. Vol.110, No.4, pp.406–414.Google Scholar
  363. Menter, F. (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journ., Vol.32, No.8, pp.1598–1605.Google Scholar
  364. Meroney, R.N. & Bradshaw, P. (1975) Turbulent boundary layer growth over a longitudinally curved surface, AIAA Journ., Vol.13, No.11, pp.1448–1553.Google Scholar
  365. Miau, J.J., Lin, T.S., Chou, J.H., Lin, S.A. & Lin, C.K. (1990) Flow distorsion in a circular-to-rectangular transition duct. AIAA Journ., Vol.28, pp. 1447–1456.Google Scholar
  366. Miau, J.J., Lin, E. C. ,Chen, Q. S., Chou, J. H., Pan, D. & Lin, CK. (1996) Swirling flows in circular-to-rectangular transition duct. Exp. Fluids, Vol.20, pp.401–409.Google Scholar
  367. Mitchell, J.E. & Hanratty, T.J. (1966) A study of turbulence at a wall using an electrochemical wall shear-stress meter. J. Fluid Mech., Vol.26, pp.199–221.Google Scholar
  368. Miyake, Y. & Kajishima, T. (1986a) Numerical simulation of the effect of Coriolis force on the structure of turbulence. Global effects. Bull. JSME, Vol.29, pp.3341–3346.Google Scholar
  369. Miyake, Y. & Kajishima, T. (1986b) Numerical simulation of the effect of Coriolis force on the structure of turbulence. Structure of turbulence. Bull. JSME, Vol.29, pp.3347–3351.Google Scholar
  370. Moin, P. & Kim, J. (1982) Numerical investigation of turbulent channel flow, J. Fluid Mech. Vol.118, pp.341–377.MATHGoogle Scholar
  371. Moon, I.M. (1964) Effect of Coriolis forces on the turbulent boundary layer in rotating machines. MIT Gas Turbine Lab. Report, No.74.Google Scholar
  372. Moore, W.L. (1951) An experimental investigation of boundary layer development along a rough surface. PhD Thesis, State Univ. Iowa., IO.Google Scholar
  373. Moore, J. (1967) Effect of Coriolis on turbulent flow in rotating rectangular channels. MIT Gas Turbine Lab. Report, No.89.Google Scholar
  374. Moretti, P.M. & Kays, W.M. (1965) Heat transfer to a turbulent boundary layer with varying free stream velocity and varying surface temperature. Int. J. Heat Mass Transfer, Vol.8, pp.1187–1202.Google Scholar
  375. Morse, A.P. (1988) Numerical prediction of turbulent flow in rotating cavities. J. Turbomachinery, Vol.110, pp.202–215.Google Scholar
  376. Morse, A.P. (1991a) Assessment of laminar-turbulent transition in closed disc geometries. J. Turbomachinery, Vol.113, pp.131–138.Google Scholar
  377. Morse, A.P. (1991b) Application of a low Reynolds number K-e turbulence model to high-speed rotating cavity flows. J. Turbomachinery, Vol.113, pp.98–105.Google Scholar
  378. Moser, R.D. & Moin, P. (1987) The effects of curvature in wall-bounded turbulent flows, J. Fluid Mech., Vol.175, pp.479–510.Google Scholar
  379. Moses, H.L. (1964) The behavior of turbulent boundary layers in adverse pressure gradients. PhD Thesis, MIT Gas Turbine Lab. Report 73.Google Scholar
  380. Muck, K.C. (1982) Turbulent boundary layers on mildly curved surfaces. PhD Thesis, Imperial College, London, England.Google Scholar
  381. Muck, K.C., Hoffman, P.H. & Bradshaw, P. (1985) The effect of convex curvature in wall bounded turbulent flows. J. Fluid Mech., Vol.161, pp.347–369.Google Scholar
  382. Mulhearn, PJ. (1978) Turbulent flow over a periodic rough surface. Phys. Fluids, Vol.21, No.7, pp.1113–1115Google Scholar
  383. Mulhearn, P.J. & Finnigan, J J. (1978) Turbulent flow over a very rough, random Surface. Boundary Layer Met., Vol.15, pp.109–132.Google Scholar
  384. Müller, U.R. (1982) Measurement of the Reynolds stresses and the mean-flow field in a three-dimensional pressure-driven boundary layer. J. Fluid Mech., Vol.119, pp.121–153.Google Scholar
  385. Murakami, M. & Kikuyama, K. (1980) Flow in axially rotating pipes. Trans. ASME, J. Fluids Eng., Vol.102, No.1, pp. 97–103.Google Scholar
  386. Murlis, J., Tsai, H.M. & Bradshaw, P. (1982) The structure of turbulent boundary layers at low Reynolds numbers. J. Fluid Mech., Vol.122, pp. 13–56.Google Scholar
  387. Murphy, H.D., Chambers, F.W. & Mc Eligot, D.M. (1983) Laterally converging flow. Part 2: Temporal wall shear stress, J. Fluid Mech., Vol.127, pp.403–428.Google Scholar
  388. Myong, H.K. (1991) Numerical investigation of fully developed turbulent fluid flow and heat transfer in a square duct. Int. J. Heat Fluid Flow, Vol.12, No.4, pp.344–352.Google Scholar
  389. Myong, H.K. (1993) A Numerical study on the generation of turbulence-driven secondary flow in a square duct. Trans. ASME, J. Fluids Eng., Vol.115, No.1, pp.172–175.Google Scholar
  390. Myong, H.K. & Kasagi, N. (1990a) Prediction of anisotropy of the near-wall turbulence with an anisotropic low-Reynolds-number K-e turbulence model. Trans. ASME, J. Fluids Eng., Vol.112, pp.521–524.Google Scholar
  391. Myong, H.K. & Kasagi, N. (1990b) A new approach to the improvement of K-ε turbulence model for wall-bounded shear flows. JSME Int. J. Ser.II, Vol.33, No.1, pp.63–72.Google Scholar
  392. Nagano, Y. & Shimada, M. (1995) Rigourous modeling of dissipation-rate equation using direct simulations. JSME International, Ser.B, Vol.58, p.51.Google Scholar
  393. Nagano, Y. & Tagawa, M. (1990) An improved K-e model for boundary layer flows. Trans. ASME, J. Fluids Eng., Vol.112, No.1, pp.33–39.Google Scholar
  394. Nagano, Y., Tagawa, M. & Tsuji, T. (1991) Effect of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer. Proc. 8th. Turbulent Shear Flow Symp., Tech. Univ. Munich, pp.2–3–1, 6.Google Scholar
  395. Nagano, Y., Tsuji, T. & Houra, T. (1997) Structure of turbulent boundary layer subjected to adverse pressure gradient. Proc. 11th. Turb. Shear Flows, Grenoble, Vol.3, pp.33–7–33–12.Google Scholar
  396. Naimi, M. & Gessner, F.B. (1995) A calculation method for developing turbulent flow in rectangular ducts of arbitrary aspect ratio. Trans. ASME, Journ. Fluids Eng., Vol.117, pp.249–258.Google Scholar
  397. Nakamura, Y. & Ohya, Y. (1983) The effects of turbulence on the mean flow past square rods. J. Fluid Mech., Vol.137, pp.333–347.Google Scholar
  398. Nakamura, Y. & Ohya, Y. (1984) The effects of turbulence on the mean flow past two-dimensional rectangular cylinders. J. Fluid Mech., Vol. 149, pp.255–273.Google Scholar
  399. Nakamura, Y. & Ozono, S. (1987) The effect of turbulence on a separated and reattaching flow. J. Fluid Mech., Vol. 178, pp.477–490.Google Scholar
  400. Nakayama, A. & Chow, W.L. & Sharma, D. (1983) Calculation of fully developed turbulent flows in duct of arbitrary cross-section. J. Fluid Mech., Vol.128, pp.199–217.MATHGoogle Scholar
  401. Nakayama, A. & Koyama, H. (1984) A wall law for turbulent boundary layers in adverse pressure gradients. AIAA Journ., Vol. 22, No.10, pp.1386–1389.MATHGoogle Scholar
  402. Nallasamy, M. (1987) Computation of confined turbulent coaxial jet flows. J. Propulsion, Vol.3, No.3, pp.263–268.Google Scholar
  403. Naot, D. & Rodi, W. (1982) Numerical simulations of secondary currents in channel flow, J. Hydraulics Div. ASCE, Vol.108 (HY8) pp.948–968.Google Scholar
  404. Naot, D., Shavit, A. & Wolfshtein, M. (1974) Numerical calculation of Reynolds stresses in a square duct with secondary flow, Wärme- u Stoffübertragung, Vol.7, No.3, pp.151–161.Google Scholar
  405. Narasimha, R. & Sreenivasan, K.R. (1973) On relaminarization. Adv. Appl. Mechanics, Vol.13.Google Scholar
  406. Nash, J.F. (1965) Turbulent boundary layer behavior and the auxiliary equation. AGARDograph 97, pp.275–279.Google Scholar
  407. Nash, J.F. & Patel, V.C. (1972) Three-Dimensional boundary layers. SBC Technical BooksGoogle Scholar
  408. Nejad, A.S., Vanka, S.P., Favarolo, S.C., Saminy, M. & Langenfeld, C. (1990) Application of laser velocimetry for characterization of confined swirling flow. J. Engineering Gas Turbines Power, Vol.111, pp.37–45.Google Scholar
  409. Neves, J.C., Moin, P. & Moser, R.D. (1994) Effects of convex transverse curvature on wall-bounded turbulence. Part 1. The velocity and vorticity. J. Fluid Mech., Vol. 272, pp.349–381.MATHGoogle Scholar
  410. Neves, J.C. & Moin, P. (1994) Effects of convex transverse curvature on wall-bounded turbulence. Part 2. The pressure fluctuations. J. Fluid Mech., Vol. 272, pp.383–406.MATHGoogle Scholar
  411. Nezu, I., Nakagawa, H. & Tominaga, A. (1985) Secondary currents in a straight channel flow and the relation to its aspect ratio. In Bradbury, LJ.S., Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J.H. (Eds.) Turbulent shear flow, Vol.4, pp.246–260. Springer Verlag, Heidelberg.Google Scholar
  412. Niederschulte, M.A., Adrian, R.J. & Hanratty, TJ. (1990) Measurements of a turbulent flow in a channel with particle image velocimetry. Exp. Fluids, Vol.9, pp.222–230.Google Scholar
  413. Nikjooy, M. & Mongia, H.C. (1991) A second-order modeling study of confined swirling flow. Int. J. Heat Fluid Flow, Vol.12, No.1, pp.12–19.Google Scholar
  414. Nikjooy, M., Mongia, H.C. Samuelsen, G.S. & McDonnell, V.G. (1989) A numerical and experimental study of confined swirling jets. AIAA Paper AIAA-89–2898. Google Scholar
  415. Nikjooy, M., So, R.M.C. & Hwang, B.C. (1985) A comparison of three algebraic stress closures for combustor flow calculations. ASME Paper 85-WA/FE-3. Google Scholar
  416. Nishino, K. & Kasagi, N. (1989) Turbulence statistics measurements in a two-dimensional channel flow using a three-dimensional particle tracking velocimeter. Proc. 7th. Symp. Turbulent Shear Flows, Stanford, p.22.1.1.Google Scholar
  417. Nisizima, S. (1987) Numerical study of turbulent channel flows using an improved anisotropic k-e model. Trans. JSME, Ser.B, Vol.53, No.495, pp.3166–3172.Google Scholar
  418. Northrop, A. & Owen, J.M. (1988) Heat transfer measurements in rotating-disc systems. Part 2: The rotating cavity with a radial outflow of cooling air. Int. J. Heat Fluid Flow, Vol.9, No.1, pp.27–36.Google Scholar
  419. Ölçmen, S.M. & Simpson, R.L. (1989) Some near-wall features of three-dimensional boundary layers. In Num. Physical Aspects for Aerodynamic Flows, Cebeci, T. (Ed.).Google Scholar
  420. Ölcmen, S. & Simpson, R.L. (1992) Perspective: on the near-wall similarity of three-dimensional turbulent boundary layers. Trans. ASME, J. Fluids Eng., Vol. 114, pp.487–495.Google Scholar
  421. Ölçmen, S.M. & Simpson, R.L. (1995) An experimental study of a three-dimensional pressure-driven turbulent boundary layer. J. Fluid Mech., Vol.290, pp.225–262.Google Scholar
  422. Osaka, H., Nishino, T., Oyama, S. & Kageyama, Y. (1982) Self preservation for a turbulent boundary layer over a d-type surface. Memoirs Faculty Engng. Yamaguchi Univ., Vol.33, pp.9–16.Google Scholar
  423. Owen, J.M. (1988) Air-cooled gas-turbine discs: a review of recent research. Int. J. Heat Fluid Flow, Vol.9, No.4, pp.354–365.MathSciNetGoogle Scholar
  424. Owen, J.M., Pincombe, J.R. & Rogers, R.H. (1985) Source-sink flow inside a rotating cylindrical cavity. Journ. Fluid Mech., Vol.155, pp.233–266.Google Scholar
  425. Owen, J.M. & Rogers, R.H. (1989) Flow and Heat Transfer in Rotating Disc Systems. Vol.1: Rotor Stator Systems, Research Studies Press, Taunton (John Wiley Inc., New York).Google Scholar
  426. Owen, J.M. & Pincombe, J.R. (1980) Velocity measurements inside a rotating cavity with a radial outflow of fluid. J. Fluid Mech., Vol. 99, p.111.Google Scholar
  427. Panchapakesan, N.R., Nickels, T.B., Joubert, P.N. & Smits, A.J. (1997) Lateral straining of turbulent boundary layers. Part 2. Streamline convergence. J. Fluid Mech., Vol.349, pp.1–30.Google Scholar
  428. Panovsky, H.A. & Dutton, J.A. (1984) Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley.Google Scholar
  429. Park, S.W. & Chung, M.K. (1989) Curvature-dependent two-equation model for prediction of two-dimensional recirculating flows. AIAA Journ., Vol. 27, No.3, pp.340–344.Google Scholar
  430. Patel, V.C. (1965) Calibration of the Preston tube and limitations on its use in pressure gradients, J. Fluid Mech., Vol.23, Part 1, pp. 185–208.Google Scholar
  431. Patel, V.C. (1973) A unified view of the law of the wall using mixing-length theory, Aero. Quart., Vol.24, Pt.1, pp.55–70.Google Scholar
  432. Patel, V.C. & Baek, J.H. (1987a) Boundary layers in planes of symmetry, Part I: experiments in turbulent flows. AIAA Journ., Vol.25, pp.550–559.Google Scholar
  433. Patel, V.C. & Baek, J.H. (1987b) Boundary layers in planes of symmetry, Part II: calculation of laminar and turbulent flows. AIAA Journ., Vol.25, pp.812–824.Google Scholar
  434. Patel, V.C. & Head, M.R. (1968) Reversion of turbulent to laminar flow, J. Fluid Mech., Vol.34, pt.2, pp.371–392.Google Scholar
  435. Patel, V.C. & Lee, Y.T. (1977) Thick axisymmetric turbulent boundary layer and near wake of a low-drag body of revolution. IIHR Report No.210, the Univ. Iowa.Google Scholar
  436. Patel, V.C. & Sotiropoulos, F. (1997) Longitudinal curvature effects in turbulent boundary layers. Progr. Aerosp. Sci., Vol.33, pp. 1–70.Google Scholar
  437. Patrick, W.P. & McCormick, D.C. (1988) Laser velocimeter and total pressure measurements in circular-to-rectangular transition ducts. NASA CR-182286 Google Scholar
  438. Pauley, W.R. & Eaton, J.K. (1988) Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA Journ., Vol.26, pp.816–823.Google Scholar
  439. Pauley, W.R., Eaton, J.K. & Cutler, A.D. (1993) Diverging boundary layers with zero streamwise pressure gradient and no wall curvature. AIAA Journ., Vol.31, No.12, pp.2212–2219.Google Scholar
  440. Perkins, H.J. (1970) The formation of streamwise vorticity in turbulent flow, J. Fluid Mech., Vol.44, pp.721–740.MATHGoogle Scholar
  441. Perry, A.E. , Bell, J.B. & Joubert, P.N. (1966) Velocity and temperature profiles in adverse pressure gradient turbulent boundary layers. J. Fluid Mech., Vol.25, Part 2, pp.299–320.Google Scholar
  442. Perry, A.E., Henbest, S. & Chong, M.S. (1986) A theoretical and experimental study of wall turbulence. J. Fluid Mech., Vol.165, pp.163–199.MathSciNetMATHGoogle Scholar
  443. Perry, A.E. & Joubert, P.N. (1963) Rough-wall boundary layers in adverse pressure gradients. J. Fluid Mech., Vol.17, pp.193–211.MATHGoogle Scholar
  444. Perry, A.E., Li, J.D. (1990) Experimental support for the attached-eddy hypothesis in zero-pressure gradient boundary layers. J. Fluid Mech., Vol. 218, pp.405–438.Google Scholar
  445. Perry, A.E., Lim, K.L. & Hembest, S.M. (1987) An experimental study of the turbulence structure on smooth- and rough-wall boundary layers. J. Fluid Mech., Vol. 177, pp.437–466.Google Scholar
  446. Perry, A.E., Marusic, I. & Li, J.D. (1993) Recent ideas and development in the modelling of wall turbulence. In So, R.M.C., Speziale, C.G. & Launder, B.E. (Eds.) Near-Wall Turbulent Flows, pp.1029–1030. Elsevier.Google Scholar
  447. Perry, A. & Schofield, W.H. (1973) Mean velocity and shear stress distributions in turbulent boundary layers, Phys. Fluids, Vol.16, No.12, pp.2068–2074.Google Scholar
  448. Perry, A.E., Schofield, W.H. & Joubert, P.N. (1969) Rough wall turbulent boundary layers. J. Fluid Mech., Vol.37, Pt.2, pp.383–413.Google Scholar
  449. Phadke, U.P. & Owen, J.M. (1988) Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems. Part 1: The behavior of simple-shrouded rotating-disk systems in quiescent environment. Int. J. Heat Fluid Flow, Vol.9, No.2, pp.98–105.Google Scholar
  450. Phillips, O.M. (1955) The irrotational motion outside a free turbulent boundary. Proc. Cambridge Phil. Soc., Vol.51, pp.220–229.MATHGoogle Scholar
  451. Pierce, F.J. & Duerson, S.H. (1975) Reynolds stress tensors in an end wall three-dimensional channel boundary layer. Trans. ASME, Journ. Fluids Eng., Vol.97, pp.61–67.Google Scholar
  452. Pierce, F.J. & Ezekewe, C.I. (1976) Measured uw stress gradients in a three-dimensional turbulent boundary layer. Trans. ASME, Journ. Fluids Eng., Vol.98, No.4, pp.768–770.Google Scholar
  453. Pierce, F.J. & Harsh, M.D. (1988) The mean flow structure around and within a turbulent junction vortex. Part II. The separated and junction vortex flow. Trans. ASME, J. Fluids Eng., Vol.110, No.4, pp.415–423.Google Scholar
  454. Pierce, F.J., McAllister, J.E. & Tennant, M.H. (1983a) A review of near-wall similarity models in three-dimensional turbulent boundary layers. Trans.ASME, J. Fluids Eng. Ser.I, Vol.105, pp.251–256.Google Scholar
  455. Pierce, F.J., McAllister, J.E. & Tennant, M.H. (1983b) Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer. Trans ASME, J. Fluids Eng. SerJ, Vol.105, pp.257–262.Google Scholar
  456. Pierce, F.J. & Shin, J. (1992) The development of a turbulent junction vortex system. Trans. ASME, J. Fluids Eng., Vol.114, pp.559–565.Google Scholar
  457. Pierce, F.J. & Tree, I.K. (1990) The mean flow structure in the symmetry plane of a tubulent junction vortex. Trans. ASME, J. Fluids Eng., Vol.112, pp.16–22.Google Scholar
  458. Pimenta, M.M., Moffat, R J. & Kays, W.M.(1975) The turbulent boundary layer: an experimental study of the transport of momentum and heat with the effect of roughness. Report HMT-21, Thermosci. Div., Deptmt. Mech. Engng. Stanford Univ., CA.Google Scholar
  459. Pompeo, L., Bettelini, M.S.G. & Thomann, H. (1993) Laterally strained turbulent boundary layers near a plane of symmetry. J. Fluid Mech., Vol. 257, pp.507–532.Google Scholar
  460. Popovich, A.T. & Hummel, R.L. (1967) Experimental study of the viscous sublayer in turbulent pipe flow, AJChE Journ., Vol.13, No 5, pp.854–860.Google Scholar
  461. Pourahmadi, F. & Humphrey, J.A.C. (1983) Prediction of curved channel flow with an extended k-e model of turbulence. AIAA Journ., Vol. 21, No.10, pp.1365–1373.MATHGoogle Scholar
  462. Prabhu, A., Narasimha, R. & Rao, B.N.S. (1983) Structure and mean flow similarity in curved turbulent boundary layers. In Dumas, R. & Fulachier, L. (Eds.) Structure of Complex Turbulent Shear Flows, pp.100–105. Springer Verlag, Berlin.Google Scholar
  463. Prabhu, A. & Rao, B.N.S. (1985) Turbulent boundary layers in a longitudinally curved stream. Depmt. Aero. Eng. Rep. 81-FM-10, Indian Inst. Sci. Bangalore, India; see also AIAA 81–1193. Google Scholar
  464. Prahlad, T.S. (1973) Mean velocity profiles in three-dimensional incompressible turbulent boundary layers. AIAA Journ., Vol.11, pp.359–365.Google Scholar
  465. Prandtl, L. (1926) Über die ausgebildete Turbulenz. Verh. 2nd. Intl. Kong. Für Tech. Mech. Zürich (english Translation, NACA TM 435, p.62)Google Scholar
  466. Prandtl, L. & Schlichting, H. (1933) Das Wiederstandgesetz rauher Platten. Werft Reederer Hafen, Vol.15, pp.1–4.Google Scholar
  467. Raetz, G.S. (1957) A method of calculating three-dimensional laminar boundary layers of steady compressible flows. Northrop Aircraft Inc. Rep. No. NAI-58–73. Google Scholar
  468. Raghunathan, S. & McAdam, R.J.W. (1983) Free-stream turbulence effects on attached subsonic turbulent boundary layers. AIAA Journ., Vol.21, No.4, pp.503–508.Google Scholar
  469. Rai, M.M. & Moin, P. (1991) Direct simulation of turbulent flow using finite difference schemes. J. Comp. Phys., Vol.96, p.15.MATHGoogle Scholar
  470. Ramaprian, B.R. & Shivaprasad, B.G. (1977) Mean flow measurements in boundary layers along mildly curved surfaces, AIAA Journ., Vol.15, No.2, pp.189–196.Google Scholar
  471. Ramaprian, B.R. & Shivaprasad, B.G. (1978) The structure of turbulent boundary layers along mildly curved surfaces. J. Fluid Mech., Vol.85, Part 2, pp.273–303.Google Scholar
  472. Rao, G.N.V. (1967) The law of the wall in a thick axisymmetric turbulent boundary layer. Trans. ASME, Journ. Basic Eng. Ser.D, Vol.89, pp.237–238.Google Scholar
  473. Rao, G.N.V. & Keshavan, N.R. (1972) Axisymmetric turbulent boundary layers in zero pressures gradients, Trans. ASME, J. Appl. Mech., Vol.39E, No.1, pp.25–32.Google Scholar
  474. Raupach, M.R. (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech., Vol.108, pp.363–382.MATHGoogle Scholar
  475. Raupach, M.R., Antonia, R.A. & Rajagopalan, S. (1991) Rough-wall turbulent boundary layers. Appl. Mech. Rev., Vol.44, pp.1–25.Google Scholar
  476. Raupach, M.R., Coppin, P.A., & Legg, B.J. (1986) Experiments on scalar dispersion within a plant canopy. Part 1: The turbulence structure. Boundary Layer Met., Vol.35, pp.21–52.Google Scholar
  477. Raupach, M.R., Thorn, A.S. & Edwards, I. (1980) A wind tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary Layer Met., Vol.18, pp.373–397.Google Scholar
  478. Rhode, D.L., Lilley, D.C. & McLaughlin, D.K. (1982) On the prediction of turbulent swirling flowfields found in axisymmetric combustor geometries. ASMEJ. Fluids Eng., Vol.104, pp.378–384.Google Scholar
  479. Ribeiro, M.M. & Whitelaw, J.H. (1980a) The structure of turbulent jets, Proc. Roy. Soc. London, Vol.A370, pp.281–301.Google Scholar
  480. Ribeiro, M.M. & Whitelaw, J.H. (1980b) Coaxial jets with and without swirl, J. Fluid Mech., Vol.96, Pt.4, pp.769–795.Google Scholar
  481. Richmond, R.L. (1957) Experimental investigation of thick, axially symmetric layers on cylinders at subsonic and hypersonic speeds. Hypersonic Research Proj. Memo. 39. Calif. Inst Tech. Pasadena, CA.Google Scholar
  482. Richmond, M.C. & Patel, V.C. (1991) Convex and concave surface curvature effects in wall-bounded turbulent flows. AIAA Journ., Vol.29, No.6, pp.895–902.Google Scholar
  483. Roach, P.E. & Brierley, D.H. (1989) The influence of a turbulent freestream on zero pressure gradient transitional boundary layer development including the condition test cases T3A and T3B, In Numerical Simulation of UnsteadyFlows and Transition to Turbulence, Pironneau, O. et Al. (Eds.), Cambridge Univ. Press.Google Scholar
  484. Roback, R. & Johnson, B.V. (1983) Mass and momentum turbulent transport experiments with confined swirling co-axial jets. NASA CR-168252. Google Scholar
  485. Robertson, J.M. & Holt, C.F. (1972) Stream turbulence effects on turbulent boundary layer. J. Hydraulics Div.Proc. ASCE, Vol.98, No.H76, p.1095.Google Scholar
  486. Rodi, W. (1972) The prediction of free turbulent boundary layers by use of a two-equation model of turbulence. PhDThesis, Univ. Karlsruhe, Germany.Google Scholar
  487. Rodi, W. & Scheuerer, G. (1983) Calculation of curved shear layers with two-equation turbulence models. Phys.Fluids, Vol.26, No.6, pp.547–554.Google Scholar
  488. Rodi, W. & Scheuerer, G. (1985) Calculation of turbulent boundary layers under the effect of free-stream turbulence. Proc. 5th. Symp. Turbulent Shear Flows, pp.2.19–26, Cornell Univ.Google Scholar
  489. Rodi, W. & Scheuerer, G. (1986) Scrutinizing the k-e model under adverse pressure gradient conditions. Trans.ASME I, J. Fluids Eng., Vol.108, pp.174–179.Google Scholar
  490. Rogers, B.K. & Head, M.R. (1969) Measurements of three-dimensional boundary layers. J. Roy. Aeron. Soc., Vol.73, pp.796–798.Google Scholar
  491. Rotta, J.C. (1950) Das in Wandnähe gültige Geschwindigkeitsgesetz turbulenter Strömungen. Ing. Arch., Vol.18, pp.277–280.MathSciNetMATHGoogle Scholar
  492. Rotta, J.C. (1962) Universal aspects of the mechanism of turbulent boundary layer flow, Prog. Aero. Sci., Vol.2, pp.22–219.Google Scholar
  493. Sabot, J. & Comte-Bellot, G. (1976) Intermittency of coherent structures in the core region of fully developed turbulent pipe flow. J. Fluid Mech., Vol.74, part 4, pp.767–796.Google Scholar
  494. Sabot, J., Saleh, I. & Comte-Bellot, G. (1977) Effect of roughness on the intermittent maintenance of Reynolds shear stress in pipe flow. Phys. Fluids, Vol.20, No.10, Part 2, S150–155.Google Scholar
  495. Saddoughi, S.G. & Joubert, P.N. (1991) Lateral straining of turbulent boundary layers. Part 1. Streamline divergence. J. Fluid Mech., Vol.229, pp. 173–204 .Google Scholar
  496. Saddoughi, S.G., Hafez, S. & Joubert, P.N. (1991) Some preliminary results for the effects of streamline convergence on a fully developed turbulent boundary layer. Proc.2nd. Osaka Int. Coll. Viscous Fluid Dyn. OceanTechnology, pp.423–445.Google Scholar
  497. Saffman, P.G. & Wilcox, D.C. (1974) Turbulence-model predictions for turbulent boundary layers. AIAA Journ., Vol.12, pp.541–546.MATHGoogle Scholar
  498. Saminy, M., Nejad, A.S., Langenfeld, CA. & Favarolo, S.C (1989) Non axisymmetric instabilities in a dump combustor with swirling inlet flow. J. Propulsion, Vol.6, No.1, pp.78–84.Google Scholar
  499. Samuel, A.E. & Joubert, P.N. (1974) A boundary layer developing in an increasingly adverse pressure gradient. J.Fluid Mech., Vol.66, Pt.3, pp.481–505.Google Scholar
  500. Sandborn, V.A. & Kline, S.J. (1961) Flow models in boundary layer stall inception. Trans. ASME D, J. BasicEng., Vol.83, pp.317–327.Google Scholar
  501. Sandborn, V.A. & Liu, C.Y. (1968) On turbulent boundary layer separation. J. Fluid Mech., Vol.32, Pt.2, pp.293–304.Google Scholar
  502. Schiestel, R. & Elena, L.(1997) Modeling of anisotropic turbulence in rapid rotation. Aerosp. Sci. Technol., Vol.7, pp.441–451.Google Scholar
  503. Schiestel, R., Elena, L. & Rezoug, T. (1993) Numerical modeling of turbulent flow and heat transfer in rotating cavities. Num. Heat Transfer, Vol.A24, pp.45–65.Google Scholar
  504. Schlichting, H. (1979) Boundary Layer Theory, Mc Graw Hill, 2nd. Edition, New York.MATHGoogle Scholar
  505. Schofield, W.H. (1981) Equilibrium layers in moderate to strong adverse pressure gradients, J. Fluid Mech., Vol.113, pp.91–122.MATHGoogle Scholar
  506. Schofield, W.H. (1986) Two-dimensional separating turbulent boundary layers, AIAA Journ., Vol.24, No.10, pp.1611–1620.Google Scholar
  507. Schraub, F.A. & Kline, S.J. (1965) A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients. Thermosci. Div. Report MD-12, Mechanical Engng. Deptmt., Stanford Univ., Stanford, CA.Google Scholar
  508. Schubauer, G.B. & Spangenberg, W.B. (1960) Forced mixing in boundary layers. J. Fluid Mech., Vol. 8, pp.10–32.MATHGoogle Scholar
  509. Schubauer, G.B. & Klebanoff, P.S. (1951) Investigation of separation of the turbulent boundary layer. NACA Rept.No. 1030.Google Scholar
  510. Schwarz, W.R. & Bradshaw, P. (1993) Measurements in a pressure-driven three-dimensional turbulent boundary layer during development and decay. AIAA Journ., Vol. 31, No.7, pp.1207–1214.Google Scholar
  511. Schwarz, W.R. & Bradshaw, P. (1994a) Turbulence structural changes for a three-dimensional boundary layer in a 30 deg. bend. J. Fluid Mech., Vol. 272, pp.183–209.Google Scholar
  512. Schwarz, W.R. & Bradshaw, P. (1994b) Term-by-term tests of stress-transport models in a three-dimensional boundary layer. Phys. Fluids, Vol.6, pp.986–998.Google Scholar
  513. Seginer, I., Mulhearn, P.J., Bradley, E.F. & Finnigan, J.J. (1976) Turbulent flow in a model plant canopy. Boundary Layer Met., Vol. 10, pp.423–453.Google Scholar
  514. Senstadt, O. & Moin, P. (1991) On the mechanisms of 3-D turbulent boundary layers. Proc. 8th. Symp. Turb.Shear Flows, Techn. Univ. Munich, pp.5–4–1, 5–4–5.Google Scholar
  515. Shabaka, I.M.M.A. & Bradshaw, P. (1981) Turbulent flow measurements in an idealized wing-body junction. AIAAJourn., Vol.19, pp.431–432.Google Scholar
  516. Shafi, H.S. & Antonia, R.A. (1994) Anisotropy of the Reynolds stresses in a turbulent boundary layer on a rough wall. Exp. Fluids, Vol.18, pp.213–215.Google Scholar
  517. Shanebrook, J.R. & Hatch, D.E. (1972) A family of hodograph models for the crossflow velocity component of three-dimeniosnal boundary layers; J. Basic Eng. Trans. ASME, pp.321–332.Google Scholar
  518. Sharif, M.A.R. & Wong, Y.K.E. (1995) Evaluation of the performance of three turbulence models in the prediction of confined swirling flows. Comp. Fluids, Vol.24, No.1, pp.81–100.MATHGoogle Scholar
  519. Shih, T.H., Zhu, J., Liou, W.W., Chen, K.H., Liu, N.S. & Lumley, J.L. (1997) Modeling of turbulent flows. Proc. 11th. Symp. Turbulent Shear Flows, Vol.3, pp.31–1, 31–6.Google Scholar
  520. Shiloh, K. Shivaprasad, B.G. & Simpson, R.L. (1981) The structure of a separating turbulent boundary layer, Part 3: Transverse velocity measurements. J. Fluid Mech., Vol.113, pp. 17–90 .Google Scholar
  521. Shima, N. (1988) A Reynolds-stress model for near-wall and low-Reynolds number regions. Trans. ASME, J.Fluids Eng., Vol.110, pp.38–44.Google Scholar
  522. Shima, N. (1993a) Prediction of turbulent boundary layers with a second-moment closure: Part I: Effects of Periodic pressure gradient, wall transpiration, and free-stream turbulence. Trans. ASME, J. Fluids Eng., Vol.115, No.1, pp.56–63.Google Scholar
  523. Shima, N. (1993b) Prediction of turbulent boundary layers with a second-moment closure: Part II: Effects of streamline curvature and spanwise rotation. Trans. ASME, J. Fluids Eng., Vol.115, No.1, pp.64–69.Google Scholar
  524. Shivaprasad, B.G. & Ramaprian, B.R. (1978) Turbulence measurements in boundary layers along mildly curved surfaces, Trans. ASME, J. Fluids Eng., Vol.100, pp.37–46.Google Scholar
  525. Sigal, A. & Danberg, J.E. (1990) New correlations of roughness density effect on the turbulent boundary layer. AIAA Journ., Vol.28, No.3, pp.554–556.Google Scholar
  526. Simonich, J.C. & Bradshaw, P. (1978) Effect of free-stream turbulence on heat transfer through a turbulent boundary layer. Trans. ASME, J. Heat Transfer, Vol.100, pp.671–677.Google Scholar
  527. Simpson, R.L. (1973) A General correlation of roughness density effects on the turbulent boundary layer. AIAAJourn. Vol.11, No.2, pp.242–244.Google Scholar
  528. Simpson, R.L. (1977) Some important physical phenomena in flows with separated turbulent boundary layers. In Murthy, S.N.B. (Ed.) Turbulence in Internal Flows, Turbomachinery and Other Engineeering Applications, pp.311–345; Hemisphere Publ. Corp., Washington D.C.Google Scholar
  529. Simpson, R.L. (1983) A model for backflow mean velocity profile, AIAA Journ., Vol.21, pp. 142–143.Google Scholar
  530. Simpson, R.L. (1985) Two-dimensional turbulent separated flow. AGARDograph Vol.1, No.287.Google Scholar
  531. Simpson, R.L. (1989) Turbulent boundary layer separation. Ann. Rev. Fluid Mech., Vol.21, pp.205–234 .Google Scholar
  532. Simpson, R.L. (1996) Aspects of turbulent boundary layer separation. Progr. Aerosp. Sci., Vol.32, pp.427–521.Google Scholar
  533. Simpson, R.L., Agarwal, N.K., Nagabushana, K.A. & Olcmen, S. (1990) Spectral measurements and other features of separating turbulent flows. AIAA Journ., Vol.28, No.3, pp.446–452.Google Scholar
  534. Simpson, R.L., Strickland, J.H. & Barr, P.W. (1977) Features of a separating turbulent boundary layer in the vicinity of separation, J. Fluid Mech., Vol.79, Pt.3, pp.553–594 .Google Scholar
  535. Simpson, R.L., Chew, Y.T. & Shivaprasad, B.G. (1981a) The structure of a separating turbulent boundary layer, Part 1: Mean flow and Reynolds stresses. J. Fluid Mech., Vol.113, pp.23–51.Google Scholar
  536. Simpson, R.L., Chew, Y.T. & Shivaprasad, B.G. (1981b) The structure of a separating turbulent boundary layer, Part 2: Higher order turbulent results. J. Fluid Mech., Vol.113, pp.53–73.Google Scholar
  537. Simpson, R.L. & Wallace, D.B. (1975) Laminarescent turbulent boundary layers: experiments on sink flows. Project SQUID Tech. Rept. SMU-1-PU, Southern Methodist Univ., Dallas, TX.Google Scholar
  538. Singh, R.K. & Azad, R.S. (1995) Asymptotic velocity defect profile in an incipient-separating axisymmetric flow. AIAA Journ., Vol.33, No.1, pp.94–101.Google Scholar
  539. Sjolander, S.A. (1980) Eddy viscosity in two-dimensional and laterally strained boundary layer. PhD Dissertation, Cambridge.Google Scholar
  540. Skare, P.E. & Krogstad, P.-A. (1994) A turbulent equilibrium boundary layer near separation. J. Fluid Mech., Vol. 272, pp.319–348.Google Scholar
  541. Sloan, D.G., Smith, PJ. & Smoot, L.D. (1986) Modelling of swirl in turbulent flow systems. Prog. Energy and Combustion Science. Vol.12, pp. 163–250 .Google Scholar
  542. Smits, A.J., Young, S.T.B. & Bradshaw, P. (1979a) The effect of short regions of high surface curvature on turbulent boundary layers, J. Fluid Mech., Vol.94, Part 2, pp.209–242.Google Scholar
  543. Smits, A J., Eaton, J.A. & Bradshaw, P. (1979b) The response of a turbulent boundary layer to lateral divergence. J. Fluid Mech., Vol.94, Part 2, pp.243–268.Google Scholar
  544. Snarski, S.R. & Lueptow, R.M. (1995) Wall pressure and coherent structures in a turbulent boundary layer on a cylinder in axial flow. J. Fluid Mech., Vol.286, pp.137–171.Google Scholar
  545. So, R.M.C. (1975) A turbulent velocity scale for curved shear flows, J. Fluid Mech., Vol.70, Part 1, pp.43–62.Google Scholar
  546. So, R.M.C., Ahmed, S.A. & Mongia, H.K. (1984) An experimental investigation of gas jets in confined swirling air flow. NASA CR-3832. Google Scholar
  547. So, R.M.C., Lai, Y.G., Zhang, H.S. & Hwang, B.C. (1991a) Second-order near-wall turbulence closures: a review. AIAA Journ., Vol.29, No.11, pp.1819–1835.MATHGoogle Scholar
  548. So, R.M.C. & Mellor, G.L. (1972) An experimental investigation of turbulent boundary layers along curved surfaces. NASA CR 1940. Google Scholar
  549. So, R.M.C. & Mellor, G.L. (1973) Experiments on convex curvature effects in turbulent boundary layers, J. Fluid Mech., Vol.60, Part 1, pp.43–62.Google Scholar
  550. So, R.M.C. & Mellor, G.L. (1975) Experiments on turbulent boundary layer on a concave wall, Aero. Quarterly, Vol.XXVI, pp.25–40.Google Scholar
  551. So, R.M.C., Zhang, H.S. & Speziale, C.G. (1991b) Near-wall modeling of the dissipation rate equation. AIAA Journ., Vol.29, No.12, pp.2069–2076.MATHGoogle Scholar
  552. Sommer, H.T. (1983) Swirling flow in a research combustor, AIAA Paper AIAA-83–0313. Google Scholar
  553. Sotiropoulos, F. & Patel, V.C (1994) Prediction of turbulent flow through a transition duct using a second-moment closure. AIAA Journ., Vol.32, No.11, pp.2194–2204.Google Scholar
  554. Sotiropoulos, F. & Patel, V.C. (1995) Turbulence anisotropy and near-wall modelling in predicting three-dimensional shear flows. AIAA Journ., Vol.33, No.3, pp.504–514.Google Scholar
  555. Spalart, P.R. (1986) Numerical study of sink-flow boundary layers, J. Fluid Mech., Vol.172, pp.307–328.MATHGoogle Scholar
  556. Spalart, P.R. (1988) Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech., Vol.187, pp.61–98.MATHGoogle Scholar
  557. Spalart, P. & Leonard, A. (1985) Direct numerical simulation of equilibrium turbulent boundary layers. Proc. 5th. Turb. Shear Flow Symp., pp.9.35–9.40. Cornell Univ., Ithaca, NY.Google Scholar
  558. Spalart, P. & Watmuff, J.H. (1993) Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech., Vol.249, pp.337–371.Google Scholar
  559. Spangenberg, W.G., Rowland, W. R. & Mease, N.E. In Sovran, G. (Ed.) Fluid Mechanics of Internal Flow, pp.110–151. Elsevier (1967).Google Scholar
  560. Speziale, C.G. (1982) On turbulent secondary flows in pipes of non circular crosssection, Int. J. Eng. Sci., Vol.20, pp.863–872.MATHGoogle Scholar
  561. Squire, H.B. & Winter, K.G. (1951) The secondary flow in a cascade of aerofoils in a uniform stream. J. Aero. Sci., Vol.18, pp.271–277.MATHGoogle Scholar
  562. Sreenivasan, K.R. & Antonia, R.A. (1977) Properties of wall shear stress fluctuations in a turbulent duct flow. Trans. ASME, J. Appl. Mech., Vol.44, pp.389–385.Google Scholar
  563. Stevenson, W.H., Thompson, H.D. & Craig, R.R (1984). Laser velocimeter measurements in highly turbulent recirculating flows. Trans. ASME, Journ. Fluids Eng., Vol.106, No.2, pp.173–180.Google Scholar
  564. Stewart, R.W. (1956) Irrotational motion associated with free turbulent flows. J. Fluid Mech., Vol.1, pp.593–604.MathSciNetMATHGoogle Scholar
  565. Stewartson, K. (1953) On the flow between two rotating coaxial disks. Proc. Cambridge Phil. Soc., Vol.49, pp.333–341.MathSciNetMATHGoogle Scholar
  566. Stratford, B.S. (1959a) The prediction of separation of turbulent boundary layer. J. Fluid Mech., Vol.5, pp.1–16 .MathSciNetMATHGoogle Scholar
  567. Stratford, B.S. (1959b) An experimental flow with zero skin friction throughout its region of pressure rise. J. Fluid Mech., Vol.8, pp.143–155.MathSciNetGoogle Scholar
  568. Sturgess, G.J. & Syed, S.A. (1990) Calculation of confined swirling flows. Int. Journ. Turbo and Jet Engines, Vol.7, pp.103–121.Google Scholar
  569. Su, M.D. & Friedrich, R. (1994) Investigation of fully developed turbulent flow in a straight duct with large-eddy simulation. Trans. ASME, J. Fluid Eng., Vol.116, pp.677–684.Google Scholar
  570. Swafford, T.W. (1983) Analytical approximation of two-dimensional separated turbulent boundary layer velocity profiles. AIAA Journ., Vol.21, No.6, pp.923–925.MATHGoogle Scholar
  571. Swearingen, J.D. & Blackwelder, R.F. (1987) The growth and breakdown of streamwise vortices in the presence of a wall, J. Fluid Mech., Vol.182, pp.255–290.Google Scholar
  572. Symes, C.R. & Fink, L.E. (1977), In Proceedings of Structure and Mechanisms of Turbulence, Vol.1. Berlin.Google Scholar
  573. Syred, B. & Beér, J.M. (1974) Combustion in swirling flows: a review. Combustion and Flame, Vol.23, pp. 143–201.Google Scholar
  574. Tani, I. (1962) Production of longitudinal vortices inthe boundary layer along a concave wall, J. Geophys. Res., Vol.67, pp.3075–3080.Google Scholar
  575. Tarada, F. (1990) Prediction of rough-wall boundary layers using a low Reynolds number K-e model. Int. J. HeatFluid Flow, Vol.11, No.4, pp.331–345.Google Scholar
  576. Taylor, E.S. (1967) Discussion on the paper by P.N. Joubert, A.E. Perry and KX.Brown, In Fluid Mechanics ofInternal Flows, Elsevier.Google Scholar
  577. Taylor, A.K.M.F., Whitelaw, J.H. & Yianneskis, M. (1982a) Curved ducts with strong secondary motion: velocity measurements of developing laminar and turbulent flow. Trans. ASME, J. Fluids Eng., Vol.104, pp.350.Google Scholar
  578. Telionis, D.P. (1981) Unsteady viscous flows. Springer Series Comp. Physics, Springer Verlag.Google Scholar
  579. Theodorsen, T. & Regier, A. (1944) Experiments on drag of revolving disks, cylinders and streamline rods at high speeds. NACA Rep. 793. Google Scholar
  580. Thole, K.A., Bogard, D.G. & Whan-Tong, J.L.(1994) Generating high freestream turbulence levels. Exp. Fluids, Vol.17, pp.375–380.Google Scholar
  581. Thole, K.A. & Bogard, D.G. (1996) High freestream turbulence effects on turbulent boundary layers. Trans. ASME, Journ. Fluids Engng, Vol. 118, pp.277–284.Google Scholar
  582. Thomann, H. (1968) Effect of stream wise wall curvature on heat transfer in a turbulent boundary layer. J. FluidMech., Vol.33, pp.283–292.Google Scholar
  583. Torii, S. & Yang, W.J. (1995) Numerical prediction of fully developed turbulent swirling flows in axially rotating pipe by means of a modified K-e turbulence model. Int. J. Num. Meth. Fluids, Vol.5, pp.175–183.MATHGoogle Scholar
  584. Townes, H.W. & Sabersky, R.H. (1966) Experiments on the flow over a rough surface. IntJ. Heat Mass Transfer, Vol.11, No.6, pp.729–738 .Google Scholar
  585. Townsend, A.A. (1960) The development of turbulent boundary layers with negligible wall stress, J. Fluid Mech., Vol.8, pp.143–155.MathSciNetMATHGoogle Scholar
  586. Townsend, A.A. (1961a) Equilibrium layers and wall turbulence, J. Fluid Mech., Vol.11, Part 1, pp.97–120.Google Scholar
  587. Townsend, A.A. (1961b) The behaviour of a turbulent boundary layer near separation. J. Fluid Mech., Vol.12, pp.536.MathSciNetGoogle Scholar
  588. Townsend (1976) The Structure of Turbulent Shear Flow. 2nd. Edn. Cambridge Univ. Press, Cambridge.MATHGoogle Scholar
  589. Townsend, A.A. (1979) Flow patterns of large eddies in a wake and in a boundary layer. J. Fluid Mech., Vol.95, pp.515–537.Google Scholar
  590. Traugott, S.C.(1958) Influence of solid-body rotation on screen-induced turbulence. NACA TN 4135. Google Scholar
  591. Turan, Ö, Azad, R.S. & Kassab, S.Z. (1987) Experimental and theoretical evaluation of the (math) spectral law. Phys.Fluids, Vol. 39, No.11, pp.3463–3474.Google Scholar
  592. Tutu, N.K. & Chevray, R. (1975) Cross-wire anemometry in high-intensity turbulence. J. Fluid Mech., Vol.71, p.785.Google Scholar
  593. Van den Berg, B. (1975) A three-dimensional law of the wall for turbulent shear flows. J. Fluid Mech., Vol.70, pp.149–160.MATHGoogle Scholar
  594. Van den Berg, B. & Elsenaar, A. (1972) Measurements in a three-dimensional incompressible turbulent boundary layer in an adverse pressure gradient under infinite swept wing conditions. NLR-TR-72092U. Google Scholar
  595. Van den Berg, B., Elsenaar, A., Lindhout, J.P.F. & Wesseling, P. (1975) Measurements in an incompresssible turbulent boundary layer, under finite wing conditions, and comparison with theory. J. Fluid Mech., Vol.70, pp. 127–147.Google Scholar
  596. Van Driest, E.R. (1956) On turbulent flow near a wall. J. Aeron. Sci., Vol.23, pp.1007–1011.MATHGoogle Scholar
  597. Viala, S., Deniau, H. & Aupoix, B. (1995) Prediction of relaminarization using low Reynolds number turbulence models. Proc. 10th. Symp. Turbulent Shear Flow, Penn. State Univ., pp.11–25, 30.Google Scholar
  598. Von Karman, Th. (1921) Über laminare une turbulente Reibung. ZAMM, Vol.1, pp.233–252.MATHGoogle Scholar
  599. Vu, B.T. & Gouldin, F.C. (1982) Flow measurements in a model swirl combustor. AIAA Journ., Vol.20, No.5, pp.642–651.Google Scholar
  600. Wagner, R.E. & Velkoff, H.R. (1972) Measurements of secondary flows in a rotating duct. Trans. ASME, J. Eng.Power, Vol.94, Ser.A, pp.261–270.Google Scholar
  601. Wang, K.C. (1971) On the determination of the zones of influence and dependence for three-dimensional boundary layers. J. Fluid Mech., Vol.48, pp.397–404.MATHGoogle Scholar
  602. Ward-Smith, A.J. (1971) Pressure Losses in Ducted Flows. Butterworth.MATHGoogle Scholar
  603. Watmuff, J.H. & Westphal, R.V. (1989) A turbulent boundary layer at low Reynolds number with adverse pressure gradient Proc. 10th. Australian Fluid Mech. Conf., Melbourne.Google Scholar
  604. Watmuff, J.H., Witt, H.T. & Joubert, P.N. (1985) Developing turbulent boundary layers with system rotation. J.Fluid Mech., Vol.157, pp.405–448.Google Scholar
  605. White, A. (1964) Flow of a fluid in axially rotating pipe. J. Mech. Eng. Sci., Vol.6, No.1, pp.47–54.Google Scholar
  606. White, F.M. (1914)Viscous fluid flow. Mc Graw Hill.Google Scholar
  607. White, F.M., Lessman, R.C. & Christoph, G.H. (1975) A three-dimensional integral method for calculating incompressible skin friction. Trans. ASME, J. Fluids Eng., Vol.97, No.4, pp.550–557.Google Scholar
  608. Wietrzak, A. & Lueptow, R.M. (1994) Wall shear stress and velocity in a turbulent axisymmetric boundary layer. J. Fluid Mech., Vol.259, pp.191–218.Google Scholar
  609. Wilcox, D.C. (1988a) Reassessment of the scale-determining equation for advanced turbulence models. AIAAJourn., Vol.26, No.11, pp.1299–1310.MathSciNetMATHGoogle Scholar
  610. Wilcox, D.C. (1993) Turbulence modelling for CFD, Griffin.Google Scholar
  611. Wilcox, D.C. & Chambers, T.L. (1977) Streamline curvature effects on turbulent boundary layers, AIAA Journ., Vol.15, pp.574–580.Google Scholar
  612. Wilcox, D.C. & Traci, R.M. (1976) A complete model of turbulence, AIAA Paper 76–351, San Giego, CA.Google Scholar
  613. Wilkinson, S.P. & Malik, M.R. (1985) Stability experiments on the flow over a rotating disk. AIAA Journ., Vol.21, pp.588–595.Google Scholar
  614. Willmarth, W.W. (1975) Structure of turbulent boundary layers, Adv. Applied Mech., Vol.15, pp.159–254.Google Scholar
  615. Willmarth, W.W. & Bogar, J.B. (1977) Survey and new measurements of turbulent structure near the wall. Phys.Fluids Suppl., Vol.20, pp.S9-S21.Google Scholar
  616. Willmarth, W.W., Winkel, R.E., Sharma, L.K. & Bogar, TJ. (1976) Axially symmetric turbulent boundary layers on cylinders: Mean velocity profiles and wall pressure fluctuations. J. Fluid Mech., Vol.76, pt.1, pp.35–64.Google Scholar
  617. Willmarth, W.W. & Yang, C.S. (1970) Wall-pressure fluctuations beneath turbulent boundary layers on a flat plate and a cylinder. J. Fluid Mech., Vol.41, Pt.1, pp.47–80.Google Scholar
  618. Wood, D.H. & Antonia, R.A. (1975) Measurements in a turbulent boundary layer over a D-type surface roughness. Trans. ASME E: J. Appl. Mech., Vol.42, pp.591–597.Google Scholar
  619. Wood, D.H. & Ferziger, J.H. (1984) The potential flow bounded by a mixing layer and a solid surface. Proc. Roy.Soc. London, Ser.B; Vol.395, pp.265.MATHGoogle Scholar
  620. Wood, D.H. & Westphal, R.V. (1988a) Velocity spectra in the irrotational flow outside a turbulent shear layer. Phys. Fluids, Vol.31, No.6, pp.1807–1813.Google Scholar
  621. Wood, D.H. & Westphal, R.V. (1988b) Measurements of the free-stream fluctuations above a turbulent boundary layer. Phys. Fluids, Vol.31, No.10, pp.2834–2840.Google Scholar
  622. Wooding, R.A., Bradley, E.F. & Marshall, J.K. (1973) Drag due to regular arrays of roughness elements of varying geometry. Boundary Layer Met., Vol.5, pp.285–308.Google Scholar
  623. Xia, J.Y. & Taylor, C. (1993) The prediction of turbulent flow and heat transfer in a tight square sectioned 1800 bend. Proc. 8th. Int. Conf. Num. Meth. Laminar & Turbulent Flows, Swansea, Wales.Google Scholar
  624. Yaglom, A.M. (1979) Similarity laws for constant-pressure and pressure-gradient turbulent wall flows, Ann. Rev.Fluid Mech., Vol.11, pp.505–540.Google Scholar
  625. Yajnik, K.S. (1970) Asymptotic theory of turbulent channel and boundary layer flows, J. Fluid Mech., Vol.42, pp.411–427.MATHGoogle Scholar
  626. Yamada, Y. & Imao, S. (1980) Swirling flow in an axially rotating pipe. Trans. JSME, Vol.46, No.409, Ser.B, pp.1662–1680.Google Scholar
  627. Yamada, Y., Imao, S. & Toyozumi, K. (1985) Turbulence and its structure in an axially rotating pipe flows. Trans.JSME (B), Vol.54, No.46, pp.34–62 (in Japanese).Google Scholar
  628. Yasuhara, M. (1959) Experiments on axisymmetric boundary layers along a cylinder in incompressible flow. Trans.Japan Soc. Aerosp. Sci., Vol.2, p.33.Google Scholar
  629. Yoon, H.K. & Lilley, D.G. (1984) Further time-mean measurements in confined swirl flows. AIAA Journ., Vol.22, pp.514–515.Google Scholar
  630. Yoshida, H., Furuya, T. & Echigo, R. (1987) The effect of lateral divergence on the structure of a turbulent channel flow and its heat transfer. Proc. 6th. Symp. Turbulent Shear Flows, pp.2–1–1/6. Toulouse, France.Google Scholar
  631. Zandbergen, P.J. & Dijkstra, D. (1987) Von Karman swirling flows. Ann. Rev. Fluid Mech., Vol.19, pp.465–492.MathSciNetGoogle Scholar
  632. Zhang, H., Faghri, M. & White, F.M. (1996) A new low-Reynolds number K-e model for turbulent flow over smooth and rough surfaces. Trans. ASME, Journ. Fluids Engng., Vol.118, pp.255–259.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Jean Piquet
    • 1
  1. 1.ECN/LMFNantes CedexFrance

Personalised recommendations