Skip to main content

Turbulent Two-Dimensional Shear Flows

  • Chapter
  • 862 Accesses

Abstract

Turbulent shear flows can be divided into three groups according to the number of fixed boundaries:

  1. 1.

    Free turbulent shear flows are said to be free, i.e. remote from walls, like jets, wakes, mixing layers and plumes. Jets and wakes differ from each other only by the sign of the momentum creating them. Free turbulent shear flows play a significant role in many kinds of engineering equipments, in rivers and in atmosphere: jets in propulsive devices for rockets and aircrafts and pneumatic control systems, wakes behind aeroplanes and submarines, dispersion in rivers, jet streams in the atmosphère are few examples. Most of 2D shear layers are regions in which there is one single predominant direction, the streamwise direction, while the shear stresses and diffusion fluxes are significant in the direction perpendicular to it. Most of shear layers, but not all, can be considered wiihin the framework of the boundary layer approximation, with only one small length scale, 8, in a direction perpendicular to the streamwise direction. Finally free shear layers include significant regions with both strong and weak strain making them rather sensitive to turbulence modeling which is more challenging there than in the vicinity of a wall where the flow is rather shear-dominated.

  2. 2.

    Turbulent shear flows bounded by one free and one fixed boundary, such as boundary layers or wall-jets, where the wall may be straight or curved, permeable or impermeable. The velocity of the ambiant flow may be in the same or in the opposite direction of the shear flow.

  3. 3.

    Turbulent shear flows bounded by two or more fixed boundaries, such as or channel flows, pipe flows (a pipe is a closed duct of circular cross section), duct flows (a duct has a non circular cross section).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., Kondoh, T. & Nagano, Y. (1997) On Reynolds-stress expressions and near-wall scaling parameters for predicting wall and homogeneous turbulent shear flows. Int. J. Heat and Fluid Flow, Vol.18, pp.266–282.

    Article  Google Scholar 

  • Abrahamson, H., Johansson, B. & Löfdahl, L. (1994) A turbulent plane two-dimensional wall-jet in a quiescent surrounding. Eur. J. Mech. BiFluids, Vol.13, No.5, pp.533–556.

    Google Scholar 

  • Achenbach, E. (1974) Vortex shedding from spheres. Journ. Fluid Mech. Vol.62, pp.209–221.

    Article  Google Scholar 

  • Afzal, N. & Yajnik, K. (1973) Analysis of turbulent pipe and channel flows at moderately large Reynolds number, Journ. Fluid Mech. Vol.61, Pt.1, pp.23–31.

    Article  Google Scholar 

  • Ahn, J.W. & Sung, H.J. (1995) Prediction of two-dimensional momentumless wake by K-e-y model. AIAA Journ. Vol.33, No.4, pp.611–617.

    Article  Google Scholar 

  • Ahn, J.W., Park, T.S. & Sung, H.J. (1997) Application of a near-wall turbulence model to the flows over a step with inclined wall. Int. J. Heat Fluid Flow, Vol.18, pp.209–217.

    Article  Google Scholar 

  • Akdag, V. (1983) An experimental investigation of a wake merging into a boundary layer in constant pressure. MS Thesis, Deptmt. Mech. Eng., California Inst. Techn.

    Google Scholar 

  • Alber, I.E. (1980) Turbulent wake of a thin plate, AIAA Journ. Vol.18, pp.1044–1051.

    Article  MathSciNet  MATH  Google Scholar 

  • Alcaraz, E., Charnay, G. & Mathieu, J. (1977) Measurements in a wall-jet over a convex surface. Phys. Fluids, Vol.20, No.2, pp.203–210.

    Article  Google Scholar 

  • Alfredsson, P.H., Johansson, A.V., Haritonidis, J.H. & Eckelmann, H. (1988) The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids, Vol.31, No.5, pp.1026–1033.

    Article  Google Scholar 

  • Andreopoulos, J. & Bradshaw, P. (1980) Measurements of interacting turbulent shear layers in the near wake of a flat plate. Journ. Fluid Mech. Vol.100, Pt.3, pp.639–668.

    Google Scholar 

  • Andreopoulos, J., Durst, F., Zaric, Z. & Jovanovic, J. (1984) Influence of Reynolds number on characteristics of turbulent wall layers, Exp. Fluids, Vol.2, pp.7–16.

    Article  Google Scholar 

  • Antonia, R.A., Anselmet, F. & Chambers, A.J. (1986a) Assessment of local isotropy using measurements in a plane jet, Journ. Fluid Mech., Vol.163, pp.365–391.

    Article  Google Scholar 

  • Antonia, R.A. & Bilger, R.W. (1973) An experimental investigation of an axisymmetric jet in a co-flowing stream, Journ. Fluid Mech. Vol.61, pp.805–822.

    Article  Google Scholar 

  • Antonia, R.A. & Bilger, R.W. (1974) The prediction of axisymmetric turbulent jet in a co-flowing stream, Aeronaut. Quarterly. Vol.26, pp.66–80.

    Google Scholar 

  • Antonia, R.A. & Bisset, D.K. (1990) Spanwise structure in the near-wall region of a turbulent boundary layer. Journ. Fluid Mech. Vol.210, pp.437–458.

    Article  Google Scholar 

  • Antonia, R.A., Bisset, D.K. & Browne, L.W.B. (1990) Effect of Reynolds number on the topology of the organized motion in a turbulent boundary layer, Journ. Fluid Mech. Vol.213, pp.267–286.

    Article  Google Scholar 

  • Antonia, R.A., Browne, L.W. & Chambers, A.J. (1984) On the spectrum of the transverse derivative of the streamwise velocity in a turbulent flow. Phys. Fluids, Vol.27, pp.2628–2631

    Article  MATH  Google Scholar 

  • Antonia, R.A., Browne, L.W.B., Rajagopalan, S. & Chambers, A J. (1983) On the organized motion of a turbulent plane jet. Journ. Fluid Mech. Vol. 134, pp.49–66.

    Article  Google Scholar 

  • Antonia, R.A., Chambers, A J., Britz, D.H. & Browne, L.W.B. (1986b) Organized structures in a plane turbulent jet: topology and contributions to momentum and heat transport. Journ. Fluid Mech. Vol.172, pp.211–229.

    Article  MATH  Google Scholar 

  • Antonia, R.A. & Kim, J. (1994) Low-Reynolds number effects on near wall turbulence. Journ. Fluid Mech. Vol.276, pp.61–80.

    Article  Google Scholar 

  • Antonia, R.A., Kim, J. & Browne, L.W.B. (1991) Some characteristics of small scale turbulence in a turbulent duct flow. Journ. Fluid Mech. Vol. 233, pp.369–388.

    Article  MATH  Google Scholar 

  • Antonia, R.A., Shah, D.A. & Browne, L.W.B. (1987a) The organized motion outside a turbulent wake, Phys. Fluids, Vol.30, No.7, pp.2040–2045.

    Article  Google Scholar 

  • Antonia, R.A., Shah, D.A. & Browne, L.W.B. (1987b) Spectra of velocity derivatives in a turbulent wake, Phys. Fluids, Vol.30, No.11, pp.3455–3462.

    Article  Google Scholar 

  • Antonia, R.A., Teitel, M., Kim, J. & Browne, L.W.B. (1992) Low-Reynolds-number effects in a fully developed turbulent channel flow. Journ. Fluid Mech. Vol.236, pp.579–605.

    Article  Google Scholar 

  • Aronson, D. & Löfdahl, L. (1993) The plane wake of a cylinder: Measurements and inferences on turbulent modeling. Phys. Fluids, Vol.A5, pp.1433–1437.

    Google Scholar 

  • Aronson, D. & Löfdahl, L. (1994) The plane wake of a cylinder: an estimate of the pressure-strain rate tensor. Phys. Fluids, Vol.A6, No.8, pp.2716–2721.

    Article  Google Scholar 

  • Badri Narayanan, M.A., Raghu, S. & Tulapurkara, E.G. (1985) The nonequilibrium region of a mixing layer, AIAA Journ. Vol.23, pp.987–991.

    Article  Google Scholar 

  • Bakewell, H.P. & Lumley, J.L. (1967) Viscous sublayer and adjacent wall region in a turbulent pipe flow, Phys. Fluids, Vol.10, pp.1880–1889.

    Article  Google Scholar 

  • Baldwin, L.V. & Sandborn, V.A. (1968) Intermittency of the far-wake turbulence, AIAA Journ. Vol.6, pp.1163–1164.

    Article  Google Scholar 

  • Balint, J.L., Wallace, J.M. & Vukoslavcevic, P. (1991) The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties. Journ. Fluid Mech. Vol. 228, pp.53–86.

    Google Scholar 

  • Barbin, A.R. & Jones, J.B. (1963) Turbulent flow in the inlet region of a smooth pipe, J. Basic Eng. Trans. ASME, Vol.85, No.1, pp.29–34.

    Article  Google Scholar 

  • Bardina, J., Lyrio, A.A., Kline, S J., Ferziger J.H. & Johnston, J.P. (1981) A prediction method for planar diffuser flows, Journ. Fluids Eng. Trans. ASME, Vol.103, pp.315–321.

    Article  Google Scholar 

  • Barenblatt, G J. (1979) Similarity, Self-similarity and Intermediate Asymptotics. Plenum Press, New York.

    Book  MATH  Google Scholar 

  • Barenblatt, G.I. (1993) Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. Journ. Fluid Mech. Vol.248, pp.513–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Barenblatt, G.I. & Prostokishin, V.M. (1993) Scaling laws for fully developed shear flows. Part 2. Processing of experimental data. Journ. Fluid Mech. Vol.248, pp.521–529.

    Article  MathSciNet  MATH  Google Scholar 

  • Barnwell, R.J., Wahls, R.A. & DeJarnette, F.R. (1989) Defect stream function, law of the wall/wake method for turbulent boundary layers. AIAA Journ. Vol. 27, No.12, pp.1707–1721.

    Article  Google Scholar 

  • Barsoum, M.L., Kawall, J.G. & Keffer, J.F. (1978) Spanwise structure of the plane turbulent wake. Phys. Fluids, Vol.21, pp.157–161.

    Article  Google Scholar 

  • Batchelor, G.K. & Gill, A.E. (1962) Analysis of the stability of axisymmetric jets. Journ. Fluid Mech. Vol.14, pp.529–551.

    Article  MathSciNet  MATH  Google Scholar 

  • Batchelor, G.K; & Townsend, A.A. (1948a) Decay of isotropic turbulence in the initial period. Proc. Roy. Soc. London, Ser.A; Vol.193, pp.539–558.

    Article  MATH  Google Scholar 

  • Batchelor, G.K. & Townsend, A.A. (1948b) Decay of isotropic turbulence in the final period. Proc. Roy. Soc. London, Ser.A; Vol.194, pp.527–543.

    Article  MathSciNet  MATH  Google Scholar 

  • Batchelor, G.K. (1985) An Introduction to Fluid Mechanics, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Beavers, G.S. & Wilson, T.A. (1970) Vortex growth in jets. Journ. Fluid Mech. Vol.44, pp.97–112.

    Article  Google Scholar 

  • Becker, H.A. & Massaro, T.A. (1968) Vortex evolution in a round jet. Journ. Fluid Mech. Vol.31, pp.435–448.

    Article  Google Scholar 

  • Becker, A. & Yamazaki, S. (1978) Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames. Combust. Flame, Vol.33, pp. 123–149.

    Article  Google Scholar 

  • Barata, J.M.M., Durao, D.F.G., Heitor, M.V. & McGuirk, J.J. (1994) On the analysis of an impinging jet on grounds effects. Exp. Fluids, Vol.15, pp.117–129.

    Google Scholar 

  • Beltaos, S. & Rajaratnam, N. (1970) Impinging circular turbulent jets. J. Hydraulic Div. Proc. ASCE, Vol.100, pp.1311–1328.

    Google Scholar 

  • Benjamin, T.B. (1962) Theory of the vortex breakdown phenomenon, J. Fluid Mech. Vol.14, pp.593–629.

    Article  MathSciNet  Google Scholar 

  • Berger, E., Sholz, D. & Schumm, M. (1990) Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations. J. Fluids Struct. Vol.4, pp.231–257.

    Article  Google Scholar 

  • Berkooz, G., Holmes, P. & Lumley, J.L. (1993) The proper orthogonal decomposition of turbulent flows. Ann. Rev. Fluid Mech. Vol.25, pp.539–575.

    Article  MathSciNet  Google Scholar 

  • Bevilaqua, P.M. & Lykoudis, P.S. (1978) Mechanism of entrainment in turbulent wakes, AIAA Journ. Vol.9, pp.1657–1659.

    Article  Google Scholar 

  • Biringen, S. (1975) An Experimental study of a turbulent axisymmetric jet issuing in a coflowing air stream. Von Karman Inst. TN 110.

    Google Scholar 

  • Bisset, D.K., Antonia, R.A. & Browne, L.W.B. (1990a) Spatial organization of large structures in the turbulent far wake of a cylinder, Journ. Fluid Mech. Vol.218, pp.439–461.

    Article  Google Scholar 

  • Bisset, D.K., Antonia, R.A. & Britz, D. (1990b) Structure of large-scale vorticity in a turbulent far wake. Journ. Fluid Mech. Vol.218, pp.463–482.

    Article  Google Scholar 

  • Blackwelder, R.F. & Haritonidis, J.H. (1983) Reynolds number dependence of the bursting frequency in turbulent boundary layer, Journ. Fluid Mech. Vol.132, pp.87–103.

    Article  Google Scholar 

  • Bogucz, E.A. & Walker, J.D.A. (1988) The turbulent near wake at a sharp trailing edge. Journ. Fluid Mech. Vol.196, pp.555–584.

    Article  MATH  Google Scholar 

  • Boguslavski, L. & Popiel, C.O. (1979) Flow structure of the free round turbulent jet in the initial region. Journ. Fluid Mech. Vol. 90, Pt.3, pp.531–539.

    Article  Google Scholar 

  • Bradbury, L.J.S. (1965) The structure of a self-preserving turbulent plane jet, J. Fluid Mech., Vol.23, Part 1, pp.31–64.

    Article  Google Scholar 

  • Bradbury, L.J.S. & Riley, J. (1967) The spread of a turbulent plane jet into a parallel moving stream, Journ. Fluid Mech., Vol.27, Part 2, pp.381–394.

    Article  Google Scholar 

  • Bradshaw, P. (1970) Prediction of the turbulent near-wake of a symmetric airfoil. AIAA Journ. Vol.8, pp. 1507–1512.

    Article  Google Scholar 

  • Bradshaw, P. (1977) Effect of external disturbances on the spreading rate of a plane turbulent jet. Journ. Fluid Mech. Vol.80, pp.795–797.

    Article  Google Scholar 

  • Bradshaw, P. (Ed.) (1978) Turbulence, Topics in Applied Physics, Vol.12, Springer Verlag, Berlin.

    Google Scholar 

  • Bradshaw, P., Ferriss, D.H. & Johnson, R.F. (1964) Turbulence in the noise-producing region of a circular jet, Journ. Fluid Mech. Vol.19, pp.591–624.

    Article  MATH  Google Scholar 

  • Bradshaw, P. & McGee, T. (1960) Turbulent wall jets with and without an external free stream. Aero. Res. Council, R&M 3252.

    Google Scholar 

  • Bremhorst, K. & Bullock, K.J. (1970) Spectral measurements of temperature and longitudinal velocity fluctuations in fully developed pipe flow. Int. J. Heat Mass Transfer, Vol.13, pp.1313–1329.

    Article  Google Scholar 

  • Bremhorst, K. & Walker, T.B. (1973) Spectral measurements of turbulent momentum transfer in fully-developed pipe flow. Journ. Fluid Mech., Vol.61, pp. 173–186.

    Article  Google Scholar 

  • Brooke, J.W. & Hanratty, TJ. (1993) Origin of turbulence-producing eddies in channel flow. Phys. Fluids, Vol.A5, No.4, pp.1011–1024.

    Google Scholar 

  • Browand, F.K. & Laufer, J. (1975) The roles of large-scale structures in the initial development of turbulent jets. In Turbulence in Liquids, Fiedler, H. (Ed.), Vol.5, pp.333–344. Univ. Missouri, Rolla, Mo.

    Google Scholar 

  • Browne, L.W.B. & Antonia, R.A. (1986) Reynolds shear stress and heat flux measurements in a cylinder wake, Phys. Fluids, Vol.29, pp.709–713.

    Article  Google Scholar 

  • Browne, L.W.B., Antonia, R.A. & Bisset, D.K. (1986) Coherent structures in the far field of a turbulent wake, Phys. Fluids, Vol.29, pp.3612–3617.

    Article  Google Scholar 

  • Browne, L.W.B., Antonia, R.A. & Chambers, A.J. (1984) The interaction region of a turbulent plane jet. Journ. Fluid Mech. Vol. 149, pp.355–373.

    Article  Google Scholar 

  • Browne, L.W.B., Antonia, R.A. & Shah, D.A. (1987) Turbulent energy dissipation in a wake, Journ. Fluid Mech., Vol.179, pp.307–326.

    Article  Google Scholar 

  • Browne, L.W.B. & Dinkelacker, A. (1995) Turbulent pipe flow: pressures and velocities. Fluid Dynamics Res. Vol.15, pp. 177–204.

    Article  Google Scholar 

  • Bruns, J., Dengel, P. & Fernholz, H.H. (1992) Mean flow and turbulence measurements in an incompressible two-dimensional turbulent boundary layer. Part 1: Data. Institut Bericht, No.02/92, Hermann Föttinger Inst. Thermo-u. Fluid Dynamik, Techn. Univ. Berlin, Germany.

    Google Scholar 

  • Budny, R.S., Kawall, J.G. & Keffer, J.F. (1979) Vortex street evolution in the wake of a circular cylinder. In Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J.H. (Eds.) Turbulent shear Flows, pp.7.20–25.

    Google Scholar 

  • Bullock, K.J., Cooper, R.E. & Abernathy, F.H. (1978) Structural similarity in radial correlations and spectra of longitudinal fluctuations in pipe flow. Journ. Fluid Mech. Vol.88, pp.585–608.

    Article  Google Scholar 

  • Bush, W.B. & Krishnamurthy, L. (1991) Asymptotic analysis of the fully developed region of an incompressible, free, turbulent round jet. Journ. Fluid Mech. Vol. 223, pp.93–111.

    Article  MATH  Google Scholar 

  • Byggstoyl, S. & Kollmann, W. (1986a) Stress transport in the rotational and irrotational zones of turbulent shear flows, Phys. Fluids, Vol.29, pp. 1423–1429.

    Article  MathSciNet  MATH  Google Scholar 

  • Byggstoyl, S. & Kollmann, W. (1986b) A closure model for conditioned stress equations and its application to turbulent flows. Phys. Fluids, Vol.29, pp. 1430–1440.

    Article  MATH  Google Scholar 

  • Cannon, S., Champagne, E. & Glezer, A. (1993) Observations of large-scale structures in wakes behind axisymmetric bodies. Exp. Fluids, Vol.14, pp.447–450.

    Article  Google Scholar 

  • Cantwell, B. & Coles, D. (1983) An experimental study entrainment and transport in the turbulent near wake of a circular cylinder. Journ. Fluid Mech. Vol.136, pp.321–374.

    Article  Google Scholar 

  • Carmody, T. (1964) Establishment of the wake behind a disk, J. Basic Eng. Trans. ASME D, Vol.86, pp.869–883.

    Article  Google Scholar 

  • Castro, I.P. & Dianat, M. (1990) Pulsed-wire anemometry near walls. Exp. Fluids, Vol.8, pp.343–352.

    Article  Google Scholar 

  • Cervantes de Gortari, J.G. & Goldschmidt, V.W. (1981) The apparent flapping motion of a turbulent plane jet -further experimental results. Trans ASME I: J. Fluids Eng. Vol.103, pp. 119–126.

    Article  Google Scholar 

  • Challen, J. (1968) Mixing in turbulent jet flows. MEngSc. Thesis, Mech. Engng. Deptmt, Univ. of Sydney.

    Google Scholar 

  • Champagne, F.H. (1978) The fine scale structure of the turbulent velocity field, Journ. Fluid Mech. Vol.86, pp.67–108.

    Article  Google Scholar 

  • Chevray, R. (1968) The turbulent wake of a body of revolution. J.Basic Eng. Trans. ASME, Vol.D90, pp. 275–284.

    Article  Google Scholar 

  • Chevray, R. & Kovasznay, L.S.G. (1969) Turbulence measurements in the wake of a thin flat plate, AIAA Journal, Vol.7, pp.1641–1643.

    Article  Google Scholar 

  • Chevrin, P.A., Pétrie, H.L. & Deutsch, S. (1992) The structure of Reynolds stress in the near-wall region of a fully developed turbulent pipe flow. Exp. Fluids, Vol. 13, pp.405–413.

    Article  Google Scholar 

  • Chien, K.Y. (1982) Predictions of channel and boundary layer flows with a low-Reynolds number two-equation model of turbulence, AIAA Journ. Vol.20, No.1, pp.33–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Chigier, N.A. & Chervinsky, A. (1966a) Experimental and Theoretical Study of Turbulent Swirling Jets issuing from a Round Orifice. Israel J. Techn., Vol.4, N01, pp.44–54.

    Google Scholar 

  • Chigier, N.A. & Chervinsky, A. (1966b) Experimental investigation of swirling vortex motion in jets. J. Appl. Mech. Trans. ASME, Ser.E, Vol.34, No.2, pp.443–451.

    Article  Google Scholar 

  • Ching, C.Y., Djenidi, L. & Antonia, R.A. (1995) Low-Reynolds-number effects in a turbulent boundary layer. Exp. Fluids, Vol.19, No.1, pp.61–68.

    Article  Google Scholar 

  • Chua, L.P. & Antonia, R.A. (1986) The turbulent interaction region of a circular jet. Int. Comm. Heat Mass Transfer, Vol.13, pp.545–558.

    Article  Google Scholar 

  • Chua, L.P. & Antonia, R.A. (1992) Spatial organization of large structures in the near-field of a circular jet Fluid dyn. Res. Vol.9, pp.55–71.

    Article  Google Scholar 

  • Churchill, S.W. (1993) Theoretically based expressions in closed form for the local and mean coefficients of skin friction in fully turbulent flow along smooth and rough plates. Int. J. Heat Fluid Flow, Vol.14, No.3, pp.231–239.

    Article  Google Scholar 

  • Cimbala, J.M. (1995) Direct numerical simulation and modeling of a spatially evolving turbulent wake. Proc. 10th. Symp. Turb. Shear Flows, Vol.1, pp.6–25, 6–30. Penn. State Univ.

    Google Scholar 

  • Cimbala, J.M., Nagib, H. & Roshko, A. (1981) Wake instability leading to new large scale structures downstream of bluff bodies. Bull. Am. Phys. Soc. Vol.26, pp1256.

    Google Scholar 

  • Cimbala, J.M. & Park, W.J. (1990) An experimental investigation of the turbulent structure in a two-dimensional momentumless wake, Journ. Fluid Mech. Vol.213, pp.479–509.

    Article  Google Scholar 

  • Clark, J.A. (1968) A study of turbulent boundary layers in channel flow, J. Basic Eng. Trans.ASME, D, Vol.90, pp.455–468.

    Article  Google Scholar 

  • Clauser, F.H. (1954) The turbulent boundary layer. Adv. Appl. Mech. Vol.4, pp. 1–51.

    Article  Google Scholar 

  • Cohen, J. & Wygnanski, I. (1987a) The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. Journ. Fluid Mech. Vol. 176, pp.191–219.

    Article  Google Scholar 

  • Cohen, J. & Wygnanski, I. (1987b) The evolution of instabilities in the axisymmetric jet. Part 2. The flowresulting from the interaction between two waves. Journ. Fluid Mech. Vol. 176, pp.221–235.

    Article  Google Scholar 

  • Coles, D. (1956) The law of the wake in the turbulent boundary layer. Journ. Fluid Mech. Vol.1, pp.191–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Coles, D. (1962) The turbulent boundary layer in a compressible fluid. RAND Corp. Report NoR-403-PR.

    Google Scholar 

  • Coles, D. (1982) Prospects for useful research on coherent structure in turbulent shear flow. In Narasimha, R. & Deshpande, S.M. (Eds.) Surveys in Fluid Mechanics, pp.17–33. Bangalore, Indian Acad, sciences.

    Google Scholar 

  • Coles, D. & Hirst, E.A. (1968) Proc. Computation of Boundary Layers. AFOSR-IFP. Conf. Vol.1.

    Google Scholar 

  • Comte-Bellot, G. (1965) Ecoulement turbulent entre deux parois parallèles. Publ. Sci. Tech. Minist, de l’Air, Vol.160.

    Google Scholar 

  • Cooper, R.D. & Lutzky, M.(1955) Exploratory investigation of the turbulent wakes behind bluff bodies. DTMB Report, No.963, US Navy.

    Google Scholar 

  • Cooper, D., Jackson, D.C., Launder, B.E. & Liao, G.X. (1993) Impinging-jet studies for turbulence model assessment-I. Flow-field experiments. Int. J. Heat Mass Transfer, Vol.36, No.10, pp.2675–2684.

    Article  Google Scholar 

  • Corrsin, S. & Kistler, A.L. (1955). Free stream boundaries of turbulent shear flows. NACA Rep.1244.

    Google Scholar 

  • Craft, T.J., Graham, L.J.W. & Launder, B.E. (1993) Impinging jet studies for turbulence model assessment-II. An examination of the performance of four turbulence models. Int. J. Heat Mass Transfer, Vol.36, No.10, pp.2685–2697.

    Article  Google Scholar 

  • Craft, T.J. & Launder, B.L. (1992) New wall-reflection models applied to the turbulent impinging jet AIAA Journ. Vol.30, No.12, pp.2970–2972.

    Article  Google Scholar 

  • Craya, A. & Darrigol, M. (1967) Turbulent swirling jet. Phys. Fluids Suppl. Vol.10, pp.S197.

    Article  Google Scholar 

  • Dahm, W.J.A. & Dimotakis, P.E. (1987) Measurements of entrainment and mixing in turbulent jets. AIAA Journ. Vol.25, pp.1216–1223.

    Article  Google Scholar 

  • Davis, M.R. & Winarto, H. (1980) Jet diffusion from a circular nozzle above a solid wall. J. Fluid Mech. Vol.101, pp.201–221.

    Article  Google Scholar 

  • Dean, R.B. (1977) A single formula for the complete velocity profile in the turbulent boundary layer. Trans. ASME, I; Journ. Fluids Eng. Vol.98, pp.723–726.

    Article  Google Scholar 

  • Dean, R.B. (1978) Reynolds-number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans. ASME, J. Fluids Eng. Vol.100, pp.215–223.

    Article  Google Scholar 

  • Dean, R.B. & Bradshaw, P. (1976) Measurements of interacting shear layers in a duct. Journ. Fluid Mech., Vol.78, pp.641–676.

    Article  Google Scholar 

  • Demuren, A.O. & Sarkar, S. (1993) Perspective: Systematic Study of Reynolds Stress Closure Models in the Computations of Plane Channel Flows. J. Fluids Eng. Vol.115, No.1, pp.5–12.

    Article  Google Scholar 

  • Dianat, M., Fairweather, M. & Jones, W.P. (1996a) Predictions of axisymmetric and two-dimensional impinging turbulent jets. Int. J. Heat Fluid Flow, Vol.17, pp.530–538.

    Article  Google Scholar 

  • Dianat, M., Fairweather, M. & Jones, W.P. (1996b) Reynolds-stress closure applied to axisymmetric, impinging turbulent jets. Theoret. Comp. Fluid Dynamics, Vol.8, pp.435–447.

    MATH  Google Scholar 

  • Dimotakis, P.E., Miake-Lye, R.C. & Papantoniou, D.A. (1983) Structure and dynamics of round turbulent jets. Phys. Fluids, Vol.26, pp.3185–3192.

    Article  Google Scholar 

  • Djenidi, L., Dubief, Y. & Antonia, R.A. (1997) Advantages of a power law in a low Re turbulent boundary layer. Exp. Fluids, Vol.22, pp.348–350.

    Article  Google Scholar 

  • Donaldson, C. duP., Snedeker, R.S. & Margolis, AJ. A structure of free jet impingement. Part 2. Free jet turbulent structure and impingement heat transfer. Journ. Fluid Mech. Vol.45, pp.477–512.

    Google Scholar 

  • Durst, F., Jovanovic, J. & Sender, J. (1995) LDA Measurements in the near wall region of a turbulent pipe flow. Journ. Fluid Mech. Vol.295; pp. 305–335.

    Article  Google Scholar 

  • Eckelmann, H. (1974) The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow, Journ. Fluid Mech. Vol.65, Pt.3, pp.439–459.

    Article  Google Scholar 

  • Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R. & Nieuwstadt, F.T.M. (1994) Fully developed turbulent pipe flow: a comparison between direct and numerical simulation. Journ. Fluid Mech. Vol.268, pp. 175–209.

    Article  Google Scholar 

  • El Baz, A., Craft, T.J., Ince, N.Z. & Launder, B.E. (1993) on the adequacy of the thin-shear-flow equations for computing turbulent jets in stagnant surroundings. Int. J. Heat Fluid Flow, Vol. 14, No.2, pp.164–169.

    Article  Google Scholar 

  • Elena, M. (1984) Suction effects on turbulence statistics in heated pipe flow. Phys. Fluids, Vol.27, No.4, pp.861–866.

    Article  Google Scholar 

  • Eisner, J.W. & Drobniak, S. (1983) Turbulence structure in swirling jets. In Dumas, R. & Fulachier, L. (Eds.) Structure of Complex Turbulent Shear Flows, p.219. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Eisner, J.M. & Kurzak, L. (1987) Characteristics of turbulent flow in slightly heated free swirling jets. Journ. Fluid Mech. Vol.180, pp.147.

    Article  Google Scholar 

  • Eisner, J.W. & Kurzak, L. (1989) Semi-preserving development of a slightly heated free swirling jet. Journ. Fluid Mech. Vol.199, pp.237–255.

    Article  Google Scholar 

  • Ennohji, H. & Anasuma, T. (1982) Flow characteristics of the impingement region in an axisymmetric turbulent jet (normally impinging jet). Proc. Faculty Engineerng. Tokai Univ., Vol.1, pp. 147–158 (in Japanese).

    Google Scholar 

  • Era, Y. & Saima, A. (1975) An investigation of impinging jet (experiments by air, hot air and carbondioxide). Trans. JSME, Vol.41, pp.3259–3268 (in Japanese).

    Article  Google Scholar 

  • Erm, L.P. & Joubert, P.N. (1991) Low-Reynolds number turbulent boundary layers. Journ. Fluid Mech. Vol.230, pp. 1–44.

    Article  Google Scholar 

  • Erm, L.P., Smits, AJ. & Joubert, P.N. (1987) Low-Reynolds number turbulent boundary layers on a smooth flat surface in a zero pressure gradient. In Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W. & Whitelaw, J.H. Turbulent shear flows 5, pp. 186–196. Springer Verlag.

    Chapter  Google Scholar 

  • Escudier, M.P. & Keller, J.J. (1985) Recirculation in swirling flow: a manifestation of vortex breakdown. AIAA Journ. Vol.23, pp.111–116.

    Article  Google Scholar 

  • Everitt, K. (1972) The spread of turbulent jets and wakes. PhD Thesis, Univ. London.

    Google Scholar 

  • Everitt, K.W. & Robins, A.G. (1978) The development and structure of turbulent plane jets, Journ. Fluid Mech. Vol.88, pp.563–583.

    Article  Google Scholar 

  • Fabris, G. (1979) Conditional sampling study of the turbulent wake of a cylinder. J. Fluid Mech., Vol.94, pp.673–709.

    Article  Google Scholar 

  • Fabris, G. (1983) Third-order conditional transport correlations in the two-dimensional turbulent wake. Phys. Fluids, Vol.26, pp.422–427.

    Article  Google Scholar 

  • Faler, J.H. & Leibovich, S. (1978) An experimental map of the internal structure of a vortex breakdown. Journ. Fluid Mech. Vol. 86, pp.313–335.

    Article  Google Scholar 

  • Farokhi, S., Taghavi, R. & Rice, E.J. (1989) Effect of initial swirl distribution on the evolution of a turbulent jet. AIAA Journ. Vol.27, No.6, pp.700–706.

    Article  Google Scholar 

  • Faure, T. (1995) Etude expérimentale du sillage turbulent d’un corps à symétrie de révolution autopropulsé par hélice. Thèse Doctorat, Ecole Centrale de Lyon.

    Google Scholar 

  • Faure, T. & Robert, G. (1996) Turbulent kinetic energy balance in the wake of a self-propelled body. Exp. Fluids, Vol.21, No.4, pp.268–274.

    Article  Google Scholar 

  • Felsch, K.O., Geropp, D. & Walz, A. (1968) Methods for turbulent boundary layer prediction. In Kline A et al. (Ed.) Proc. AFOSR-IFP, p.70.

    Google Scholar 

  • Fernholz, H.H., Krause, E., Nockermann, M. & Schober, M. (1995) Comparative measurements for the canonical boundary layer at ReG < 6xl04 on the wall of the DNW. Phys. Fluids, Vol.A7, pp.1275–1281.

    Article  Google Scholar 

  • Fernholz, H.H. & Finley, P.J. (1996) The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Progr. Aerospace Science, Vol.32, pp.245–311.

    Article  Google Scholar 

  • Ferré, J.A. & Giralt, F. (1989a) Pattern-recognition analysis of the velocity field in plane turbulent wakes, Journ. Fluid Mech. Vol.198, pp.27–64.

    Article  MATH  Google Scholar 

  • Ferré, J.A. & Giralt, F. (1989b) Some topological features of the entrainment process in a heated turbulent wake. Journ. Fluid Mech. Vol.198, pp.65–78.

    Article  MATH  Google Scholar 

  • Fiedler, H.E. (1988) Coherent structures in turbulent flows. Progr. Aerosp. Sci. Vol.25, pp.231–270.

    Article  Google Scholar 

  • Finley, P.J., Khoo, K.C. & Chin, J.P. (1966) Velocity measurements in a thin turbulent water layer. La Houille Blanche. Vol.21, pp.713–721.

    Article  Google Scholar 

  • Finson, M. L. (1975) Similarity behavior of momentumless wakes, Journ. Fluid Mech. Vol.71, Pt.3, pp.465–479.

    Article  Google Scholar 

  • Flora, J.J. & Goldschmidt, V.W. (1969) Virtual origins of a free plane turbulent jet. AIAA Journ. Vol.7, No.12, pp.1344–1346.

    Article  Google Scholar 

  • Forstall, W. & Shapiro, A.H. (1950) Momentum and mass transfer in co-axial gas jets. J. Appl. Mech. Trans. ASME, Vol.72, p.A399.

    Google Scholar 

  • Fortuna, G. & Hanratty, T.J. (1971) Frequency response of the boundary layer on wall transfer probes, Int. J. Heat Mass Transfer, Vol.14, pp.1499–1507.

    Article  Google Scholar 

  • Foss, J.F. & Jones, J.B. Secondary flow effects in a bounded rectangulat jet. J. Basic Eng. Trans. ASME, Vol.90, pp.241–248 (1968).

    Article  Google Scholar 

  • Frenkiel, F.N. & Klebanoff, P.S. (1971) Statistical properties of velocity derivatives in a turbulent field. Journ. Fluid Mech., Vol.48, pp.183–208.

    Article  Google Scholar 

  • Freymuth, P. (1966) On transition of a separated boundary layer. J. Fluid Mech. Vol.25, pp.683–704.

    Article  Google Scholar 

  • Freymuth, P. & Uberoi, M.S. (1971) Structure of temperature fluctuations in the turbulent wake behind a heated cylinder. Phys. Fluids, Vol.14, pp.2574–2580.

    Article  Google Scholar 

  • Freymuth, P. & Uberoi, M.S. (1973) Temperature fluctuations in the turbulent wake behind an optically heated sphere. Phys. Fluids, Vol.16, pp. 161–168.

    Article  Google Scholar 

  • Fritsch, W. (1928) Einfluss der Wandrauhigkeit auf die turbulente Geschwindigkeitsverteilung im Rinnen. ZAMM, Vol.8, No.2, pp.199–216.

    MATH  Google Scholar 

  • Fu, S., Launder, B.E. & Tselepidakis, D.P. (1987) Accomodating the effects of high strain rates in modelling the pressure-strain correlation. Mech. Eng. Dept. Rep. TFDI87I5, UMIST.

    Google Scholar 

  • Fu, S., Huang, P.G., Launder, B.E. & Leschziner, M.A. (1988) A comparison of algebraic and differential second-moment closures for axisymmetric turbulent shear flows with and without swirl. Trans. ASME, J. Fluids Engng., Vol.110, pp.216–221.

    Article  Google Scholar 

  • Fuchs, H.V., Mercker, F. & Michel, U. (1979) Large-scale coherent structures in the wake of axisymmetric bodies. Journ. Fluid Mech. Vol. 93, pp.185.

    Article  Google Scholar 

  • Fujii, S., Eguchi, L. & Gomi, M. (1981) Swirling jets with and without combustion. AIAA Journ. Vol.19, No.11, pp.1438–1442.

    Article  Google Scholar 

  • Fujisawa, N. & Shirai, H. (1986) On the stability of turbulent wall jets along concave surfaces. Bull. JSME, Vol.29, No.257, pp.3761–3766.

    Article  Google Scholar 

  • Fujisawa, N. & Kobayashi, R. (1987) Turbulence characteristics of wall jets along strong convex surfaces. Int. J. Mech. Sci. Vol.29, pp.311–320.

    Google Scholar 

  • Galbraith, R.A.McD. & Head, M.R. (1975) Eddy viscosity and mixing length from measured boundary layer developments. Aero. Quarterly, Vol. 26, pt.2, pp.133–154.

    Google Scholar 

  • Gartshore, I.S. (1966) Experimental examination of the large eddy equilibrium hypothesis, Journ. Fluid Mech. Vol. 24, Pt.1, pp.89–98.

    Article  Google Scholar 

  • Gartshore, LS. & Newman, B.G. (1969a) Small perturbation jets and wakes which are approximately self preserving in a pressure gradient, CASI Trans. Vol.2, pp.101–104.

    Google Scholar 

  • Gartshore, I.S. & Newman, B.G. (1969b) The turbulent wall jet in an arbitrary pressure gradient. Aeron. Journal Quart. Vol.20, Pt.1, pp.25–56.

    Google Scholar 

  • Gautner, J.W., Livingwood, J.N.B. & Hrycak, P. (1970) Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. NASA TN D-5652 NTIS N70–18963.

    Google Scholar 

  • George, W.K. (1988) The decay of homogeneous isotropic turbulence. In Hirata, M. & Kasagi, N. (Eds.) Transport phenomena in turbulent flows. Theory, experiment and numerical simulation, pp.3–16. New York, Hemisphere .

    Google Scholar 

  • George, W.K. (1989) The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In George, W.K.& Arndt, R. (Eds.) Advances in Turbulence. Hemisphere Publ. Co. Washington D.C. pp.639–674 .

    Google Scholar 

  • George, W.K., Capp, S.P., Seif, A.A., Baker, C.B. & Taulbee, D.B. (1988) A study of the turbulent axisymmetric jet. J. Engng. Sci. King Saud Univ. Vol.14, pp.85–93.

    Google Scholar 

  • George, W.K. (1990) Governing equations, experiments and the experimentalist. Exp. Thermal Fluid Sci. Vol.3, pp.557–566.

    Article  Google Scholar 

  • George, W.K. & Hussein, H.J. (1991) Locally axisymmetric turbulence. Journ. Fluid Mech. Vol.233, pp.1–23.

    Article  MATH  Google Scholar 

  • Gerodimos, G. & So, R.M.C. (1997) Near-wall modeling of plane turbulent jets. J. Fluids Engng. Trans. ASME, Vol.119, pp.304–313.

    Article  Google Scholar 

  • Gibson, M.M. & Launder, B.E. (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech. Vol.86, part 3, pp.491–511.

    Article  MATH  Google Scholar 

  • Gibson, M.M., Verriopoulos, C.A. & Nagano, Y. (1982) Measurements in the heated turbulent boundary layer on a mildly curved convex surface. In Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J.H. Turbulent shear flows. Vol.3, pp.80–95. Lect. Notes In Phys., Springer Verlag.

    Chapter  Google Scholar 

  • Ginevskii, A.S., Pochkina, K.A. & Ukhanova, L.N. (1966) Propagation of turbulent jet flows with zero excess impulse, Fluid Dyn., Vol.1, No.6, pp.106–107.

    Article  Google Scholar 

  • Giralt, F., Chia, C J. & Trass, O.(1977) Characterization of the impingement region in an axisymmetric turbulent jet. Ind. Eng. Chem. Fundam., Vol.16, pp.21–28.

    Article  Google Scholar 

  • Giralt, F. & Ferré, J.A. (1993) Structure and flow patterns in turbulent wakes. Phys. Fluids, Vol. A5, No.7, pp.1783–1789.

    Google Scholar 

  • Goldschmidt, V.M. & Bradshaw, P. (1973) Rapping of a plane jet. Phys. Fluids, Vol.16, pp.354 – 355.

    Article  Google Scholar 

  • Goldschmidt, V.W., Young, M.F. & Ott, E.S. (1981) Turbulent convection velocities (broadband and wavenumber dependent) in a plane jet. Journ. Fluid Mech. Vol. 105, pp.327–345.

    Article  Google Scholar 

  • Grandmaison, E.W. & Becker, H.A. (1982) Turbulent mixing in free swirling jets. Can. J. Chem. Eng. Vol.60, pp.76–82.

    Article  Google Scholar 

  • Gran, R.L. (1973) An experiment on the wake of a slender propeller-driven body. Report 200086–6006 RU-00, TRW Systems.

    Google Scholar 

  • Grant, H.L. (1958) The large eddies of turbulent motion. Journ. Fluid Mech. Vol.4, pp. 149–190.

    Article  Google Scholar 

  • Granville, P.S. (1977) The drag and turbulent boundary layer of flat plates at low Reynolds numbers, J. Ship Res. Vol.21, No.1, pp.30–39.

    MathSciNet  Google Scholar 

  • Green, J.E., Weeks, DJ. & Brooman, J.W.F. (1972) Prediction of turbulent boundary layers and wakes in compressible flows by a lag entrainment method. RAE Tech. Rep. 72079.

    Google Scholar 

  • Guitton, D.E. (1970) Some contribution to the study of equilibrium and non equilibrium turbulent wall jets over curved surfaces. PhD Thesis, Mech. Engng. Mac Gill Univ.

    Google Scholar 

  • Gumilevskii, A.G. (1992) Investigation of momentumless swirled wakes on the basis of a two-parameter turbulence model. Fluid Dynamics, Vol.27, No.3, pp.326–330.

    Article  Google Scholar 

  • Gumilevski, A.G. (1993) Divergent from self-similarity in turbulent swirling axisymmetric wakes. Fluid Dynamics. Vol.28, No.1, pp.30–34 .

    Article  MathSciNet  Google Scholar 

  • Gumilevskii, A.G. (1994) Similarity and decay laws of wakes with zero momentum and angular momentum. Fluid Dynamics, Vol.28, No.5, pp.619–623.

    Article  Google Scholar 

  • Gupta, A.K. (1979) Combustion instabilities in swirling flames. Gas Wärme International, Band 28, pp.55–66.

    Google Scholar 

  • Gupta, A.K. & Kaplan, R.E. (1972) Statistical characteristics of Reynolds stress in a turbulent boundary layer, Phys. Fluids, Vol.15, pp. 981–985.

    Article  Google Scholar 

  • Gupta, A.K., Lilley, D.G. & Syred, N. (1984) Swirl flows, Abacus Press, Tunbridge Wells, Kent, England.

    Google Scholar 

  • Gutmark, E. & Ho, CM. (1983) Preferred modes and the spreading rates of jets. Phys. Fluids, Vol.26, No.10, pp.2932–2938.

    Article  Google Scholar 

  • Gutmark, E. & Wygnanski, I. (1976) The planar turbulent jet, J. Fluid Mech., Vol.73, Part 3, pp.465–495.

    Article  Google Scholar 

  • Haji-Haidari, A. & Smith, C.R. (1988) Development of the turbulent near wake of atapered thick flat plate. Journ. Fluid Mech. Vol.189, pp.135–163.

    Article  Google Scholar 

  • Hall, M.G. (1972) Vortex breakdown, Ann. Rev. Fluid Mech. Vol.4, pp. 195–218. Annual Reviews, Palo Alto, CA.

    Article  Google Scholar 

  • Hama, F.R. (1954) Boundary-layer characterictics for smooth and rough surfaces. Trans. SNAME, Vol.62, pp.333–358.

    Google Scholar 

  • Hanjalic, K. & Launder, B.E. (1972) A Reynolds stress model of turbulence and its application to thin shear flows, J. Fluid Mech., Vol.52, Part 4, pp.609–638.

    Article  MATH  Google Scholar 

  • Hanjalic, K. & Launder, B.E. (1980) Sensitizing the dissipation equation to irrotational strains, Trans. ASME, J. Fluids Eng. Vol.102, pp.34–40.

    Article  Google Scholar 

  • Hanratty, TJ., Chorn, L.G. & Hatziavramidis, D.T. (1977) Turbulent fluctuations in the viscous wall region for newtonian and drag reducing fluids. Phys. Fluids, Vol.20, S112–S119.

    Article  Google Scholar 

  • Harvey, J.K. (1962) Some observations of the vortex breakdown phenomenon. Journ. Fluid Mech. Vol.14, pp.585–592.

    Article  MATH  Google Scholar 

  • Hassid, S. (1980) Similarity and decay law of momentumless wakes, Phys. Fluids, Vol.23, pp.404–405.

    Article  Google Scholar 

  • Hayakawa, M. & Hussain, A.K.M.F. (1989) Three-dimensionality of organized structures in a plane turbulent wake. Journ. Fluid Mech. Vol.206, pp.375–404.

    Article  Google Scholar 

  • Hayakawa, M. & Iida, S. (1992) Behaviour of turbulence in the near wake of a thin flat plate at low Reynolds numbers. Phys. Fluids, Vol.A4, No.10, pp.2282–2291.

    Google Scholar 

  • Hayakawa, M., Iida, S. & Takezawa, S. (1985) The near field of a fully turbulent circular let. Phys. Fluids, Vol.28, No.2, pp.3703–3704.

    Article  Google Scholar 

  • Head, M.R. & Bandyopadhayay, P. (1981) New aspect of turbulent boundary layer structure. Journ. Fluid Mech. Vol.107, pp.297–337.

    Article  Google Scholar 

  • Hedley, T.B. & Keffer, J.F. (1974) Some Turbulent non-turbülent properties of an intermittent flow. Journ. Fluid Mech. Vol. 64, pp.645–674 .

    Article  Google Scholar 

  • Herzog, S. (1986) The large-scale structure in the near-wall region of a turbulent pipe flow. PhD Thesis, Univ. Cornell, PA.

    Google Scholar 

  • Heskestad, G. (1965) A generalized Taylor’s hypothesis with application for high Reynolds number turbulent shear flows. Trans. ASME, J. Appl. Mech., Vol.32, pp.735–739.

    Article  Google Scholar 

  • Heskestad, G. (1966) Hot wire measurements in a radial turbulent jet, J. Appl. Mech. Trans. ASME, Vol.33, pp.417–424 .

    Article  Google Scholar 

  • Higuchi, H. (1977) Experimental investigation on axisymmetric turbulent wakes with zero momentum defect. PhD Thesis, California Insty. Technology.

    Google Scholar 

  • Higuchi, H. & Kubota, T. (1990) Axisymmetric wakes behind a slender body including zero-momentum configurations. Phys. Fluids, Vol.A2, No.9, pp. 1615–1623.

    Google Scholar 

  • Hill, G.W., Jenkins, C.J. & Gilbert, B.L. (1976) Effects of initial boundary layer state on turbulent mixing. AIAA Journ. Vol.14, pp.1513–1514.

    Article  Google Scholar 

  • Hinze, J.O. (1975) Turbulence, McGraw-Hill.

    Google Scholar 

  • Honkan, A. & Andreopoulos, Y. (1997) Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers. J. Fluid Mech. Vol.350, pp.29–96.

    Article  MathSciNet  Google Scholar 

  • Huffman, G.D. & Bradshaw, P. (1972) A note on Von Karman’s constant in low Reynolds number turbulent flows, J. Fluid Mech. Vol.53, pt.1, pp.45–60.

    Article  Google Scholar 

  • Hunt, J.C.R. & Joubert, P.N. (1979) Effects of small streamline curvature on turbulent duct flow. Journ. Fluid Mech., Vol. 91, Part 4, pp.633–659.

    Article  Google Scholar 

  • Hussain, A.K.M.F. (1986) Coherent structures and turbulence. Journ. Fluid Mech. Vol.173, pp.303–356.

    Article  Google Scholar 

  • Hussain, A.K.M.F. & Clark, A.R. (1977) Upstream influence on the near fluid of a plane turbulent jet, Phys. Fluids, Vol.20, pp. 1416–1426.

    Article  Google Scholar 

  • Hussain, A.K.M.F. & Clark, A.R. (1981) Measurements of the wavenumber celerity spectrum in plane and axisymmetric jets. AIAA Journ. Vol.19, pp.51–55.

    Article  Google Scholar 

  • Hussain, A.K.M.F. & Hayakawa, M. (1987) Eduction of large-scale organized structures in a turbulent plane wake. Journ. Fluid Mech. Vol. 180, pp.193–229.

    Article  Google Scholar 

  • Hussain, A.K.M.F. & Reynolds, W.C. (1975) Measurements in fully developed turbulent channel flow, J. Fluids Eng. Trans. ASME, I, Vol.97, pp.568–578.

    Article  Google Scholar 

  • Hussain, A.K.M.F. & Zaman, K.M.B.Q. (1980) Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics. Journ. Fluid Mech. Vol.109, Pt.3, pp.493–544.

    Article  Google Scholar 

  • Hussein, H.J. (1994) Evidence of local axisymmetry in the small scales of a turbulent planar jet. Phys. Fluids, Vol. A6, No.6, pp.2058–2070.

    Article  Google Scholar 

  • Hussein, H.J., Capp, S.P. & George, W.K. (1994) Velocity measurements in a high Reynolds number, momentum-conserving axisymmetric, turbulent jet. Journ. Fluid Mech, Vol.238, pp.31–75.

    Article  Google Scholar 

  • Hussein, H.J. & George, W.K. (1990) Influence of wire spacing on derivative measurement with parallel hot-wire probes. In Bower, W.M., Morris, M.J. & Saminy, M. (Eds.) Forum on turbulent flows, ASME FED- Vol.94, pp.121–124 .

    Google Scholar 

  • Hwang, N.H.C. & Baldwin, L.U. (1966) Decay of turbulence in axisymmetric wakes. Trans. ASME, Journ. Basic Eng. Vol.88D, pp.261–268.

    Article  Google Scholar 

  • Hyun, B.S. & Patel, V.C. (1991) Measurements in the flow around a marine propeller at the stern of an axisymmetric body. Part 1: circumferentially-veraged flow. Exp. Fluids, Vol.11, pp.33–44.

    Article  Google Scholar 

  • Irwin, H.P.A. (1973) Measurements in a self-preserving plane wall jet in a positive pressure gradient, J. Fluid Mech., Vol.61, Part 1, pp.33–63.

    Article  Google Scholar 

  • Islam, S.M.N. & Tucker, H.J. (1980) Flow in the initial region of axisymmetric turbulent jets. Journ. Fluids Eng. Trans. ASME, Vol.102, pp.85–91.

    Article  Google Scholar 

  • Jambunathan, K., Lai, E., Moss, M.A. & Button, B.L. (1992) A review of heat-transfer data for single circular jet impingement. Int. J. Heat Fluid Flow, Vol.13, No.2, pp.106–115.

    Article  Google Scholar 

  • Janicka, J. (1988) Model functions of Reynolds stress models. Phys. Fluids, Vol.31, No.1, pp.49–55.

    Article  MATH  Google Scholar 

  • Johansson, A.V. & Alfreddson, P.H. (1982) On the structure of turbulent channel flow, Journ. Fluid Mech. Vol.122, pp.295–314.

    Article  Google Scholar 

  • Johansson, A.V. & Alfredsson, P.H. (1983) Effects of imperfect spatial resolution on measurements of wall-bounded turbulent shear flows. Journ. Fluid Mech. Vol.137, pp.409–421.

    Article  Google Scholar 

  • Jones, W.P. & Launder, B.E. (1972a) Some properties of sink-flow turbulent boundary layers. Journ. Fluid Mech., Vol.56, Part 2, pp.337–351.

    Article  Google Scholar 

  • Jones, W.P. & Launder, B.E. (1972b) The prediction of laminarization with a two-equation model, Int. J. Heat Mass Transfer, Vol.15, pp.301–314.

    Article  Google Scholar 

  • Jones, W.P. & Launder, B.E. (1973) The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer. Vol.16, pp. 1119–1130.

    Article  Google Scholar 

  • Jovic, S. & Ramaprian, B.R. (1986) Large scale structure of the turbulent wake behind a flat plate. Iowa Inst. Hydraulic Res. Univ. Iowa, IIHR Rept No.298.

    Google Scholar 

  • Kader, B.A. (1984) Structure of anisotropic pulsations of the velocity and temperature in a developed turbulent boundary layer. Fluid Dynamics. Vol.19, No.1, pp.3846.

    Article  Google Scholar 

  • Karlsson, R. I.,& Johansson, T.G. (1988) LDV measurements of higher moments of velocity fluctuations in a turbulent boundary layer. In Adrian, R.J., Asanuma, T., Durao, D.F.G., Durst, F. & Whitelaw, J.H. (Eds.) Laser Anemometry in Fluid Mechanics. Vol.111, pp.273–289. Ladoan-Instituto Superior Technico.

    Google Scholar 

  • Karlsson, R.I., Eriksson, J. & Persson, J. (1992) LDA measurements in a plane wall-jet in a large enclosure. Proc. 6th. Int. Symp. of Applications Laser Techniques to Fluid Mechanics, Lisbon, Portugal.

    Google Scholar 

  • Kasagi, N., Hirata, M. & Nishino, K. (1986) Streamwise pseudo-vortical structures and associated vorticity in the near-wall region of a wall-bounded turbulent shear flow. Exp. Fluids, Vol.4, pp.309–318.

    Article  Google Scholar 

  • Kastrinakis, E.G. & Eckelmann, H. (1983) Measurements of streamwise vorticity fluctuations in a turbulent channel flow, Journ. Fluid Mech. Vol.137, pp.165–186.

    Article  Google Scholar 

  • Kawamura, H., Sasaki, J. & Kobayashi, K. (1995) Budget and modelling of triple-moment velocity correlations in a turbulent channel flow based on DNS. Proc. 10th Symp. Turbulent Shear Flows, pp.26–13/18. Penn. State Univ., PA.

    Google Scholar 

  • Keffer, J.F. (1965) The uniform distorsion of a turbulent wake, Journ. Fluid Mech., Vol.22, Part 1, pp. 135–159.

    MathSciNet  Google Scholar 

  • Kennedy, D.A. & Corrsin, S. (1961) Spectral flatness factor and ‘intermittency’ in turbulence and in non-linear noise, J. Fluid Mech. Vol.10, pp.366–370.

    Article  MATH  Google Scholar 

  • Kim, J., Moin, P. & Moser, R.D. (1987) Turbulence statistics in fully-developed channel flow at low Reynolds number, J. Fluid Mech. Vol.177, pp.133–166.

    Article  MATH  Google Scholar 

  • Kind, R.J. & Suthanthiran, K. (1973) The interaction of two opposing plane turbulent wall jets, Journ. Fluid Mech., Vol.58, pp.389–402.

    Article  Google Scholar 

  • Klebanoff, P.S. (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rept.1247.

    Google Scholar 

  • Klewicki, J.C. (1989a) On the interaction between the inner and outer region motions in turbulent boundary layers. PhD Dissertation, Michigan State Univ., East Laansing, MI, USA.

    Google Scholar 

  • Klewicki, J.C. (1989b) Velocity-vorticity correlations related to the gradients of the Reynolds stresses in parallel turbulent wall flows. Phys. Fluids A. Vol.1, No.7, pp.1285–1288.

    Article  Google Scholar 

  • Klewicki, J.C. & Falco, R.E. (1990) On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes. J. Fluid Mech. Vol. 219, pp.119–142.

    Article  Google Scholar 

  • Klewicki, J.C, Murray, J.A. & Falco, R.E. (1994) Vortical motion contributions to stress transport in turbulent boundary layers. Phys. Fluids A, Vol.6, pp.277–286.

    Article  Google Scholar 

  • Kline, S.J., Reynolds, W.C. Schraub, F.A. & Runstadler, P.W. (1967) The structure of turbulent boundary layers. Journ. Fluid Mech., Vol. 30, Part 4, pp.741–773.

    Article  Google Scholar 

  • Kobayashi, R. & Fujisawa, N. (1982) Turbulence characteristics of plane wall jets. Rep. Inst. High Speed Mech. Tohoku Univ. Vol. 45, pp.95–114, Tohoku, Japan.

    Google Scholar 

  • Kobayashi, R. & Fujisawa, N. (1983a) Curvature effects on two-dimensional turbulent wall jets. Ing. Arch. Vol.53, pp.409–417.

    Article  Google Scholar 

  • Kobayashi, R. & Fujisawa, N. (1983b) Curvature effects on two-dimensional turbulent wall jets along concave Surfaces. Bull. JSME, Vol.26, No.222, pp.2074–2080.

    Article  Google Scholar 

  • Kobayashi, R. & Fujisawa, N. (1983c) Turbulence measurements in wall jets along strongly concave surfaces. Acta Mechanica, Vol.47, pp.39–52.

    Article  Google Scholar 

  • Komori, S. & Ueda, H. (1985a) The large-scale coherent structure in the intermittent region of the self-preserving round free jet. Journ. Fluid Mech. Vol.152, pp.337–359.

    Article  Google Scholar 

  • Komori, S. & Ueda, H. (1985b) Turbulent flow in the near field of a swirling round free jet. Phys. Fluids, Vol.28, No.7, pp.2075–2082.

    Article  Google Scholar 

  • Korobko, V.I., Shashmin, V.K. & Shulman, Z.P. (1984) Development of laminar jet flows with zero excess impulse. Fluid Dynamics, Vol.19, No.3, pp.361–366.

    Article  MATH  Google Scholar 

  • Korobko, V.l., Shashmin, V.K. & Shulman, Z.P. (1984) Contribution to the theory of laminar momentumless wakes. Fluid Dynamics, Vol.21, No.2, pp. 195–199.

    Article  Google Scholar 

  • Korobko, V.l., Shashmin, V.K. & Shulman, Z.P. (1987) Limiting self-similar solutions in swirling jet theory. Fluid Dynamics, Vol.21, No.6, pp.979–982.

    Article  Google Scholar 

  • Korotkov, B.N.(1976) Some forms of local self-similarity of the velocity field of turbulent wall flows. Izv. Akad. Nauk, Mekh. Zhidk. Gaza, Vol.6, p.35.

    Google Scholar 

  • Kostomakha, V.A. & Lesnova, N.V. (1991) Development of a turbulent swirling wake with zero excess momentum. In Abstracts Proc. All Union Conf. Problems Stratified Flows, Kanev, Vol.1, p.30.

    Google Scholar 

  • Kotsovinos, N.E. (1976) A note on the spreading rate and virtual origin of a plane turbulent jet. Journ. Fluid Mech. Vol.77, pp.305–311.

    Article  Google Scholar 

  • Kotsovinos, N.E. & Angelidis, P.B. (1991) The momentum flux in turbulent submerged jets Journ. Fluid Mech. Vol.229, pp.453–470.

    Article  MATH  Google Scholar 

  • Kreplin, H.P. (1976) Mitt. MPI Strömungsforschung und AWA, Göttingen, No.63.

    Google Scholar 

  • Kreplin, H.P. & Eckelmann, H. (1979a) Behaviour of the three fluctuating velocity components in the wall region of a turbulent channel flow, Phys. Fluids, Vol.22, No.7, pp.1233–1239.

    Article  Google Scholar 

  • Kreplin, H.P. & Eckelmann, H. (1979b) Propagation of perturbations in the viscous sublayer and adjacent wall region, J. Fluid Mech. Vol.95, pp.305–322.

    Article  Google Scholar 

  • Krothapalli, A., Baganoff, D. & Karamcheti, K. (1981) On the mixing of a rectangular jet. Journ. Fluid Mech. Vol.107, pp.201–220.

    Article  Google Scholar 

  • Lal, P.B.B. & Rajaratnam, N. (1979) Turbulent jets in coflowing streams, J. Eng. Mech. Div. ASCE, Vol.105, No. EM6, pp. 1025–1038.

    Google Scholar 

  • Lam, C.K.G. & Bremhorst, K.A. (1981) Modified form of the k-e model for predicting wall turbulence. J. Fluids Eng. Trans. ASME I, Vol.103, pp.456–460.

    Article  Google Scholar 

  • Landweber, L. (1953) The frictional resistance of flat plates in zero pressure gradient. Trans. SN AME, Vol.61, pp.5–32.

    Google Scholar 

  • LaRue, J. & Libby, P.A. (1974) Temperature fluctuations in the plane turbulent wake. Phys. Fluids, Vol.17, pp.1956–1957.

    Article  Google Scholar 

  • LaRue, J. & Libby, P.A. (1976) Similarity in the turbulent wake of a cylinder. Phys. Fluids, Vol.19, pp.1864.

    Article  Google Scholar 

  • LaRue, J.C. & Libby, P.A. (1978) Detailed similarity in the turbulent wake of a heated cylinder. Phys. Fluids, Vol.21, pp.891–897.

    Article  Google Scholar 

  • LaRue, J.C., Thang Ly, Rahai, H. & Pin Yao Jan (1997) On similarity of a plane turbulent jet in a coflowing stream. Proc. 11th. Symp. Turb. Shear Flow, Vol.III, pp.25–11, 16.

    Google Scholar 

  • Lasher, W.C. & Taulbee, D.B. (1994) Reynolds stress model assessment using round jet experimental data. Int. J. Heat Fluid Flow, Vol.15, No.5, pp.357–363.

    Article  Google Scholar 

  • Lau, J.C. & Fisher, M.J. (1975) The vortex-street structure of ‘turbulent’ jets. Part 1. Journ. Fluid Mech. Vol. 67, pp.299–337.

    Article  Google Scholar 

  • Lau, J.C. Fischer, M.J. & Fuchs, H.V. (1972) The intrinsic structure of turbulent jets, J. Sound Vibr. Vol.22, pp.379–406.

    Article  Google Scholar 

  • Lau, J.C., Morris, P.J. & Fisher, M.J. (1979) Measurements in subsonic and supersonic free jets using a laser velocimeter. Journ. Fluid Mech. Vol. 93, pp. 1–27.

    Article  Google Scholar 

  • Laufer, J. (1950) Some recent measurements in a two-dimensional turbulent channel flow. J. Aero. Sci. pp.257–287.

    Google Scholar 

  • Laufer, J. (1951) Investigation of turbulent flow in a two-dimensional channel. NACA Rept. 1053.

    Google Scholar 

  • Laufer, J. (1954) The structure of turbulence in fully developed pipe flow. NACA Report 1174.

    Google Scholar 

  • Laufer, J. & Zhang, X. (1983) Unsteady aspects of low Mach number jet. Phys. Fluids, Vol.26, pp.2740.

    Article  Google Scholar 

  • Launder, B.L., Reece, G J. & Rodi, W. (1975) Progress in the development of a Reynolds-stress closure, J. Fluid Mech., Vol.68, pp.537–566.

    Article  MATH  Google Scholar 

  • Launder, B.E. & Rodi, W. (1981) The turbulent wall-jet, Progr. Aerosp. Sci. Vol.19, pp.81–128.

    Article  Google Scholar 

  • Launder, B.E. & Rodi, W. (1983) The turbulent wall-jet, measurements and modelling. Ann. Rev. Fluid Mech. Vol.15, pp.429–459.

    Article  Google Scholar 

  • Launder, B.E. & Sharma, B.I. (1974) Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disk. Letters in Heat Mass Transfer, Vol.1, pp.131–138.

    Article  Google Scholar 

  • Launder, B.E. & Shima, N. (1989) Second moment closure for the near-wall sublayer development and application. AIAA Journ. Vol.27, pp.537–566.

    Article  Google Scholar 

  • Lawn, CJ. (1971) The determination of the rate of dissipation in turbulent pipe flow. J. Fluid Mech., Vol.48, Part 3, pp.477–505.

    Article  Google Scholar 

  • Lee, Shao-Lin, (1965) Axisymmetric turbulent swirling jet. Journ. Appl. Mech. Trans. ASME, Vol.89, N03, pp.258–262 Jun.

    Google Scholar 

  • Leibovich, S. (1978) The structure of vortex breakdown. Ann. Rev. Fluid Mech. Vol. 10, pp.221–246.

    Article  Google Scholar 

  • Lewkowicz, A.K. (1982) An improved universal wake function for turbulent boundary layers and some of its consequences, Z. Flugwiss. Weltraumforsch. Vol.6, Heft 4, pp.261–266.

    MATH  Google Scholar 

  • Liakopoulos, A. (1984) Explicit representation of the complete velocity profile in a turbulent boundary layer. AIAA Journ. Vol. 22, No.6, pp.844–846.

    Article  Google Scholar 

  • Libby, P.A. (1975) On the prediction of intermittent flows. J. Fluid Mech. Vol.68, p.273.

    Article  Google Scholar 

  • Lilley, D.G. (1977a) Swirl Rows in Combustion: A Review, AIAA Journ. Vol.15, No.8, pp. 1063–1078.

    Article  Google Scholar 

  • Lilley, D.G. (1977b) Swirling flows in combustion. Progr. Energy Comb. Sci. Vol.3.

    Google Scholar 

  • Lilley, D.G. (1977c) Nonisotropic turbulence in swirling flows. Acta Astronautica, Vol.4.

    Google Scholar 

  • Lin, J.T., Pao, Y.H. & Veenhuizen, S.D. (1974) Turbulent wake of a propeller-driven slender body in stratified and non-stratified fluids. Bull. Am. Phys. Soc., Vol.19, p.1165.

    Google Scholar 

  • List, E.J. (1980) Mechanics of turbulent buoyant jets and plumes. In Rodi, W. (Ed.) turbulent Jets and plumes, pp.1–68. Pergamon Press.

    Google Scholar 

  • Ljuboja, M. & Rodi, W. (1980) Calculation of turbulent wall jets with an algebraic Reynolds stress model, J. Fluids Eng. TransASME, Vol.102, pp.350–356.

    Article  Google Scholar 

  • Long, R.R. & Chen, T.C (1981) Experimental evidence for the existence of the mesolayer turbulent system. Journ. Fluid Mech. Vol. 105, pp. 19–59.

    Article  MathSciNet  Google Scholar 

  • Lumley, J.L. & Newman, G.R. (1977) The return to isotropy of homogeneous turbulence. Journ. Fluid Mech. Vol.82, pp.161–178.

    Article  MathSciNet  MATH  Google Scholar 

  • Luna, R.E. (1965) A study of impinging axisymmetric jets and their application to size classification of small particles. PhD Thesis, Princeton Univ.

    Google Scholar 

  • Lyons, S.L., Hanratty, T.J. & McLaughlin, J.B.(1991) Large computer simulation of fully developed turbulent channel flow with heat transfer. Int. J. Num. Meth. Fluids, Vol.13, pp.999–1028.

    Article  MATH  Google Scholar 

  • Maczynski, J.F.J.(1962) A round jet in an ambiant co-axial stream, Journ. Fluid Mech. Vol.13, pp.597.

    Article  MATH  Google Scholar 

  • Maczynski, J.FJ. (1971) Ein Vergleich der experimentellen und theoretischen Ergebnisse fur den runden turbulenten Flüssigkeitsstrahl in einer Aussenströmung. Zeitschr.f Flugwiss. Vol.19, pp.113.

    Google Scholar 

  • Malin, M.R. (1987) Prediction of radially spreading turbulent jets. AIAA Journ. Vol.26, No.6, pp.750–752.

    Article  Google Scholar 

  • Malmström, T.R., Kirkpatrick, A.T., Christensen, B. & Knappmiller, K.D.(1997) Centreline velocity decay measurements in low-velocity axisymmetric jets. J. Fluid Mech. Vol.246, pp.363–377.

    Article  Google Scholar 

  • Mansour, N.N., Kim, J. & Moin, P. (1988) Reynolds stress and dissipation-rate budgets in a turbulent channel flow. Journ. Fluid Mech. Vol.192, pp.15–44.

    Article  Google Scholar 

  • Marasli, B., Champagne, F.H. & Wygnanski, I.J. (1989) Modal decomposition of velocity signals in a plane, turbulent wake. Journ. Fluid Mech. Vol.198, pp.255–273.

    Article  Google Scholar 

  • Marasli, B., Champagne, F.H. & Wygnanski, I.J. (1991) On linear evolution of unstable disturbances in a plane turbulent wake. Phys. Fluids, Vol.A3, pp.665.

    Google Scholar 

  • Martinuzzi, R. & Pollard, A. (1989a) Comparative study of turbulence models in predicting turbulent pipe-flow. Part I: algebraic stress model and K-e models. AIAA Journ. Vol.27, No.1, pp.29–36.

    Article  Google Scholar 

  • Martinuzzi, R. & Pollard, A. (1989b) Comparative study of turbulence models in predicting turbulent pipe-flow. Part II: Reynolds stress and K-e models. AIAA Journ. Vol.27, No.12, pp.1714–1721.

    Article  MATH  Google Scholar 

  • Martynenko, O.G. & Korovkin, V.N. (1992) Concerning the calculation of plane turbulent jets on the basis of the K-e model of turbulence. Int. J. Heat Mass Transfer, Vol.35, No.12, pp.3389–3395.

    Article  MATH  Google Scholar 

  • Mattingly, G.E. & Chang, C.C. (1974) Unstable waves in on an axisymmetric jet column. Journ. Fluid Mech., Vol. 65, Part, pp.541–560.

    Article  MATH  Google Scholar 

  • Mc Guirk, J.J. & Rodi, W. (1979) The calculation of three-dimensional turbulent free jets. In Durst, F., Launder, B.E., Schmidt, F.W. & Whitelaw, J.H. (Eds.) Turbulent shear Flows. Vol.1, pp.71–83. Lect. Notes in Phys. Springer Verlag.

    Google Scholar 

  • Meiburg, E. & Lasheras, J.C. (1988) Topology of the vorticity field in three dimensional shear layers and wakes. Journ. Fluid Mech. Vol. 190, pp.1–37.

    Article  MathSciNet  Google Scholar 

  • Meinhardt, C.D. & Adrian, R.J. (1995) Measurements of the zero-pressure gradient turbulent boundary layer using particle image velocimetry. AIAA Paper 95–0789.

    Google Scholar 

  • Mellor, G.L. (1972) The large Reynolds number asymptotic theory of turbulent boundary layers. Int. J. Eng. Sci. Vol.10, pp.851–873.

    Article  MathSciNet  Google Scholar 

  • Mellor, G.L. and Gibson, D.M. (1966) Equilibrium turbulent boundary layers, Journ. Fluid Mech., Vol.24, Part 2, pp.225–253.

    Article  Google Scholar 

  • Mellor, G.L. & Herring, H.J. (1973) A survey of the mean turbulent field closure models, AIAA Journ. Vol.11, No.5, pp.590–599.

    Article  MATH  Google Scholar 

  • Menter, F. (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journ. Vol.32, No.8, pp.1598–1605.

    Article  Google Scholar 

  • Merritt, G.E. (1974) Wake growth and collapse in stratified flow. AIAA Journ. Vol.12, pp.940–949.

    Article  Google Scholar 

  • Michalke, A. (1965) On spatially growing disturbances in an inviscid shear layer. Journ. Fluid Mech., Vol.23, pp.521–544.

    Article  MathSciNet  Google Scholar 

  • Millikan, C.B. (1939) A critical discussion of turbulent flows in channels and circular tubes. Proc. 5th. Int. Congr. Appl. Mech., Cambridge, USA, pp.386–392.

    Google Scholar 

  • Moin, P. & Kim, J. (1982) Numerical investigation of turbulent channel flow, Journ. Fluid Mech. Vol.118, pp.341–377.

    Article  MATH  Google Scholar 

  • Moin, P. & Kim, J. (1985) The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. Journ. Fluid Mech., Vol.155, pp.441–464.

    Article  Google Scholar 

  • Morrisson, W.R.B., Bullock, K.J. & Kronauer, R.E. (1971) Experimental evidence of waves in the sublayer. Journ. Fluid Mech. Vol.47, pp.639–656.

    Article  Google Scholar 

  • Morton, B., Taylor, G.I. & Turner, J.S.(1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, Vol.A243, pp.1–23.

    MathSciNet  Google Scholar 

  • Mourn, J.W., Kawall, J.G. & Keffer, J.F. (1979) Structural features of the plane turbulent jet. Phys. Fluids, Vol.22, No.7, pp.1240–1244.

    Article  Google Scholar 

  • Mumford, J.C. (1982) The structure of the large eddies in fully developed turbulent shear flows. Part 1: the plane jet. Journ. Fluid Mech. Vol. 118, pp.241–268.

    Article  Google Scholar 

  • Mumford, J.C. (1983) The structure of the large eddies in fully developed turbulent shear flows. Part 2: the plane wake. Journ. Fluid Mech. Vol.137, pp.447–456.

    Article  Google Scholar 

  • Murlis, J., Tsai, H.M. & Bradshaw, P. (1982) The structure of turbulent boundary layers at low Reynolds numbers. Journ. Fluid Mech. Vol.122, pp.13–56.

    Article  Google Scholar 

  • Musker, A.J. (1979) Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA Journal, Vol. 17, No.6, pp.655–657.

    Article  MATH  Google Scholar 

  • Myers, G.E.; Schauer, J.J. & Eustis, R.H. (1963) The plane turbulent wall jet. Part I. J. Basic Eng. Tras. ASME, Vol.85, No.1, pp.47–54.

    Article  Google Scholar 

  • Myong, H.K. & Kasagi, N. (1990a) Prediction of anisotropy of the near-wall turbulence with an anisotropic low-Reynolds-number K-e turbulence model. J. Fluids Eng. Trans. ASME, Vol.112, pp.521–524.

    Article  Google Scholar 

  • Myong, H.K. & Kasagi, N. (1990b) A new approach to the improvement of K-e turbulence model for wall-bounded shear flows. JSME Int. J. Ser.II, Vol.33, No.1, pp.63–72.

    Google Scholar 

  • Nagano, Y. & Shimada, M. (1995) Rigorous modeling of dissipation-rate equation using direct simulations. JSME Int. J. Ser.B, Vol.38, No.1, pp.51–59.

    Article  Google Scholar 

  • Naguib, A.M. & Wark, C.E. (1992) An investigation of wall layer dynamics using a combined temporal filtering and correlation technique. Journ. Fluid Mech. Vol. 243, pp.541–560.

    Article  Google Scholar 

  • Nakayama, A. & Liu, B.,(1990) The turbulent near-wake of a flat plate at low Reynolds number, Journ. Fluid Mech. Vol.217, pp.93–114.

    Article  Google Scholar 

  • Narashima, R. & Prabhu, A. (1972) Equilibrium and relaxation in turbulent wakes. Journ. Fluid Mech., Vol. 54, Part 1, pp.1–17.

    Article  Google Scholar 

  • Narasimha, R., Yegna Narayan, K. & Parthasarathy, S.P. (1973) Parametric study of turbulent wall jets in still air. Aeron. Journal, Vol.77, pp.355–359.

    Google Scholar 

  • Naudasher, E. (1965) Flow in a wake of self-propelled bodies and related sources of turbulence, Journ. Fluid Mech., Vol. 22, Part 4, pp.625–656.

    Article  Google Scholar 

  • Neish, A. & Smith, F.T. (1992) On turbulent separation in the flow past a bluff body. Journ. Fluid Mech. Vol.241, pp.443–467.

    Article  MathSciNet  Google Scholar 

  • Newman, B.G. (1967) Turbulent jets and wakes in a pressure gradient. In Sovran, G. (Ed.) Fluid Mechanics of Internal Flow, pp.170–209. Elsevier.

    Google Scholar 

  • Niederschulte, M.A., Adrian, R.J. & Hanratty, T.J. (1990) Measurements of a turbulent flow in a channel with particle image velocimetry. Exp. Fluids, Vol.9, pp.222–230.

    Article  Google Scholar 

  • Nikuradse, J. (1932) Gesetzmässigkeit des Turbulenter Strömung in glatten Rohren. Verein Deutsch. Ing-Forschungsheft, No.356.

    Google Scholar 

  • Nishino, K. & Kasagi, N. (1989) Turbulence statistics measurements in a two-dimensional channel flow using a three-dimensional particle tracking velocimeter. Proc. 7th. Symp. Turbulent Shear Flows, Stanford, p.22.1.1.

    Google Scholar 

  • Nishino, K., Samada, M., Kasuya, K. & Torii, K. (1996) Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow. Int. J. Heat Fluid Flow, Vol.17, pp. 193–201.

    Article  Google Scholar 

  • Ogawa, N., Maki, H. & Hijikata, K. (1992) Studies of opposed turbulent jets (impact position and turbulent component in jet center) JSME International, Ser.II, Vol.35, No.2, pp.205–211.

    Google Scholar 

  • Oler, J.W. & Goldschmidt, V.W. (1980) Interface crossing frequency as a self-preserving flow variable. Phys. Fluids, Vol.23, No.1, pp.19–21.

    Article  Google Scholar 

  • Oler, J.W. & Goldschmidt, V.W. (1982) A vortex-street model of the flow in the similarity region of two-dimensional turbulent jets. Journ. Fluid Mech. Vol.123, pp.523–535.

    Article  MATH  Google Scholar 

  • Oler, J.W. & Goldschmidt, V.W. (1984) Coherent structures in the similarity region of two-dimensional turbulent jets. J. Fluids Eng. Trans. ASME, Vol. 106, No.2, pp.187–192.

    Article  Google Scholar 

  • Paizis, S.T. & Schwarz, W.H. (1974a) An investigation of the topography and motion of the turbulent interface. Journ. Fluid Mech. Vol.63, Pt.2, pp.315–343.

    Google Scholar 

  • Paizis, S.T. & Schwarz, W.H. (1974b) Entrainment rates in turbulent flows. Journ. Fluid Mech. Vol.68, pp.297–314.

    Article  Google Scholar 

  • Panchapakesan, N.R. & Lumley, J.L. (1993a) Turbulent measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. Vol. 246, pp.197–223.

    Article  Google Scholar 

  • Panchapakesan, N.R. & Lumley, J.L. (1993b) Turbulent measurements in axisymmetric jets of air and helium. Part 2. Helium jet. J. Fluid Mech. Vol. 246, pp.225–247.

    Article  Google Scholar 

  • Panchev, S. (1971) Random Functions and Turbulence. Pergamon Press.

    MATH  Google Scholar 

  • Panton, R.L. (1990) Scaling turbulent wall layers. J. Fluids Eng. Trans. ASME, Vol.112, pp.425–432.

    Article  Google Scholar 

  • Pao, H.P. & Kao, T.W. (1977) Vortex structure in the wake of a sphere. Phys. Fluids, Vol.20, pp.187–191.

    Article  Google Scholar 

  • Papailiou, D.D. & Lykoudis, P.S. (1974) Turbulent vortex streets and the entrainment mechanism of a two-dimensional free turbulent jet. Journ. Fluid Mech. Vol.62, pp. 11–31.

    Article  MATH  Google Scholar 

  • Park, W.J. & Cimbala, J.M. (1991) The Effect of jet injection geometry on two-dimensional momentumless wakes. J. Fluid Mech. Vol.224, pp.29–47.

    Article  Google Scholar 

  • Patel, R.P. (1971) Turbulent jets and wall jets in uniform streaming flow, Aeronaut. Quarterly, Vol. 22, pp.311–326.

    Google Scholar 

  • Patel, R.P. (1979) Some measurements in radial free jet. AIAA Journ. Vol.17, No.6, pp.657–679.

    Article  Google Scholar 

  • Patel, V.C. & Chen, H.C. (1987) Turbulent wake of a flat plate. AIAA Journ. Vol. 25, No.8, pp.1078–1085.

    Article  Google Scholar 

  • Patel, V.C. & Head, M.R. (1969) Some observations on skin friction and velocity profiles in fully developed and channel flows, Journ. Fluid Mech., Vol.38, Part 1, pp.181–201.

    Article  Google Scholar 

  • Patel, V.C. & Scheuerer, G. (1982) Calculation of Two-Dimensional Near and Far Wakes, AIAA Journ. Vol.20, No.7, pp.900–907.

    Article  Google Scholar 

  • Paullay, A.J., Melnik, R.E., Rubel, A., Rudman, S. & Siclari, M.J. (1985) Similarity solutions for plane and radial jets using a K-e turbulence model. J. Fluids Eng. Trans. ASME, Vol.107, pp.84.

    Article  Google Scholar 

  • Payne, F.R. & Lumley, J.L.(1967) Large-eddy structure of the turbulent wake behind a circular cylinder. Phys. Fluid Suppl. S 194–S196.

    Google Scholar 

  • Perry, A.E. & Abell, C.J. (1977) Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. Journ. Fluid Mech. Vol.79, pp.785–799.

    Article  Google Scholar 

  • Perry, A.E., Henbest, S. & Chong, M.S. (1986) A theoretical and experimental study of wall turbulence. Journ. Fluid Mech. Vol.165, pp.163–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Perry, A.E., Lim, K.L. & Hembest, S.M. (1987) An experimental study of the turbulence structure on smooth- and rough-wall boundary layers. Journ Fluid Mech. Vol. 177, pp.437–466.

    Article  Google Scholar 

  • Petersen, R.A. (1978) Influence of wave dispersion on vortex pairing in a jet. Journ. Fluid Mech. Vol.89, pp.469–495.

    Article  Google Scholar 

  • Peterson, L.F. & Hama, F.R. (1978) Instability and transition of the axisymmetric wake of a slender body of revolution, Journ. Fluid Mech. Vol. 88, part 1, pp.71–96.

    Article  Google Scholar 

  • Phillips, W.R.C. (1987) The wall region of a turbulent boundary layer. Phys. Fluids, Vol.30, No.8, pp.2354–2361.

    Article  MATH  Google Scholar 

  • Phillips, W.R.C. & Ratnanacher, J.T. (1990) The outer region of a turbulent boundary layer. Phys. Fluids, Vol.A2, No.3, pp.427–434.

    Google Scholar 

  • Plaschko, P. (1979) Helical instabilities of slowly divergent jets. Journ. Fluid Mech. Vol. 92, pp.209–215.

    Article  MATH  Google Scholar 

  • Pope, S.B. (1978) An explanation of the turbulent round/plane jet anomaly. AIAA Journ., Vol.16, pp.279–281.

    Article  Google Scholar 

  • Poreh, M., Tsuei, Y.G. & Cermak, J.E. (1967) Investigation of a turbulent radial wall jet. J. Appl. Mech. Trans. ASME, Vol.34, pp.457–463.

    Article  Google Scholar 

  • Pot, P.J. (1979) Measurements in a 2-D wake and in a 2-D wake merging into a boundary layer. Data Report, NLR TR-79063 U, The Netherlands.

    Google Scholar 

  • Prasad, R.R. & Sreenivasan, K.R. (1989) Exp. Fluids, Vol.87, pp.259.

    Google Scholar 

  • Pratt, B.D. & Keffer, J.F. (1972) The swirling Turbulent Jet, J. Basic Eng. Trans. ASME, pp.739–748, Dec.

    Google Scholar 

  • Preston, J.H. (1958) The minimum Reynolds number for a turbulent boundary layer and the selection of transition device. Journ. Fluid Mech. Vol.3, pp.373–384.

    Article  MATH  Google Scholar 

  • Purtell, L.P., Klebanoff, P.S. & Buckley, F.T. (1981) Characteristics of turbulence in a boundary layer with zero pressure gradient. Phys. Fluids, Vol.24, pp.802–811.

    Article  Google Scholar 

  • Py, B. (1973) Int. J. Heat Mass Transfer, Vol.16, pp.129.

    Article  Google Scholar 

  • Rajagopalan, K.R. & Antonia, R.A. (1981) Properties of the large structure in a slightly heated turbulent mixing layer of a plane jet. Journ. Fluid Mech. Vol.105, pp.261–281.

    Article  Google Scholar 

  • Rajaratnam, N. (1976) Turbulent jets, Elsevier Publ. Company, The Netherlands.

    Google Scholar 

  • Rajaratnam, N. & Humphries, J.A. (1984) Turbulent non-buoyant surface jets. J. Hydraulics Div. Proc. ASCE, Vol.100, pp.69–83.

    Google Scholar 

  • Ramaprian, B.R., Patel, V.C. & Sastry, M.S. (1982) The symmetric turbulent wake of a flat plate, AIAA Journ., Vol.20, pp.1228–1235.

    Article  Google Scholar 

  • Ramos, J.L. (1984) Turbulent non reacting swirling flows. AIAA Journ. Vol.22, No.6, pp.846–847.

    Article  Google Scholar 

  • Reynolds, A.J. (1962) Similarity in swirling wakes and jets, J. Fluid Mech. Vol.14, pp.241–243.

    Article  MATH  Google Scholar 

  • Rhode, D.L., Lilley, D.C. & McLaughlin, D.K. (1982) On the prediction of turbulent swirling flowfields found in axisymmetric combustor geometries. ASME J. Fluids Eng. Vol.104, pp.378–384.

    Article  Google Scholar 

  • Ribeiro, M.M. & Whitelaw, J.H. (1980a) Coaxial jets with and without swirl, Journ. Fluid Mech. Vol.96, Pt.4, pp.769–795.

    Article  Google Scholar 

  • Ribeiro, M.M. & Whitelaw, J.H. (1980b) The structure of turbulent jets, Proc. Roy. Soc. London, Vol.A370, pp.281–301.

    Google Scholar 

  • Richman, J.W. & Azad, R.S. (1973) Developing turbulent flow in a smooth pipe. Appl. Sci. Res. Vol.28, pp.477–441.

    Google Scholar 

  • Ricou, F.P. & Spalding, D.B. (1961) Measurements of entrainment by axisymmetrical turbulent jets. Journ. Fluid Mech. Vol.11, pp.21–28.

    Article  MATH  Google Scholar 

  • Ridhagni, P.R., Bevilaqua, P.M. & Lykoudis, P.S. (1971) Measurements in the turbulent wake of a sphere, AIAA Journ. Vol.9, pp.1433–1434.

    Article  Google Scholar 

  • Roach, P.E. & Brierley, D.H. (1989) The influence of a turbulent freestream on zero-pressure gradient transitional boundary layer development including the condition test cases T3A and T3B. In Numerical Simulation of Unsteady Flows and Transition to Turbulence, pp.319–347. Pironneau, O., Rodi, W., Ryhming, I.L., Savill, A.M. & Truong, T.V. (Eds.), Cambridge Univ. Press.

    Google Scholar 

  • Robins, A.G. (1973) The development of structure of a two-dimensional free jet. Journ. Fluid Mech. Vol. 88, Pt.3, pp.451–463.

    Google Scholar 

  • Rockwell, D.O. & Niccolls, W.O. (1972) Natural breakdown of planar jets. Trans. ASME I: Journ. Basic Eng. Vol.94, pp.720–730.

    Article  Google Scholar 

  • Rodi, W. (1972) The prediction of free turbulent boundary layers by use of a two-equation model of turbulence. PhD thesis, Univ. Karlsruhe, Germany.

    Google Scholar 

  • Rodi, W. (1975) A Review of Experimental Data of Uniform-Density Free Turbulent Boundary Layers, Studies in Convection, Vol.1, p.79–165. In Launder, B.E. Editor, Academic Press, New York.

    Google Scholar 

  • Rodi, W. (1976) A new algebraic relation for calculating the Reynolds stresses, Z. Angew. Math. Mech. Vol.56, T219–T221.

    Article  MATH  Google Scholar 

  • Rose, W.G.(1962) A swirling round turbulent jet. Mean-flow measurements. J. Appl. Mech. Trans. ASME, Vol.29.

    Google Scholar 

  • Roshko, A. (1976) Structure of turbulent shear flows: a new look, AIAA Journ. Vol.14, pp.1349–1357.

    Article  Google Scholar 

  • Saddoughi, S.G. & Veeravalli, S.V. (1994) Local isotropy in turbulent boundary layers at high Reynolds numbers. Journ. Fluid Mech. Vol. 268, pp.333–372.

    Article  Google Scholar 

  • Sarkar, A. & So, R.M.C. (1997) A critical evaluation of near-wall two-equation models against direct numerical simulation. Int. J. Heat Fluid Flow, Vol.18, pp. 197–208.

    Article  Google Scholar 

  • Sarkar, A. & Speziale, C.G. (1990) A simple nonlinear model for the return to isotropy in turbulence. Phys. Fluids, Vol.A2, No.1, pp.84–93.

    MathSciNet  Google Scholar 

  • Sato, H. & Kuriki, K. (1961) The mechanism of transition in the wake of a thin flat plate placed parallel to a uniform flow. Journ. Fluid Mech., Vol.11, pp.321–352.

    Article  MATH  Google Scholar 

  • Savill, A.M. (1979) Effects of turbulence on curved or distorting mean flow. PhD Thesis, Univ. Cambridge, England.

    Google Scholar 

  • Savill, A.M. (1983) The turbulence structure of a highly curved two-dimensional wake. In Dumas, R. & Fulachier, L. (Eds.) Structure of Complex Turbulent Shear Flows, pp. 185–197. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Schetz, J.A. & Jakubowski, A.K. (1975) Experimental study of the turbulent wake behind self-propelled slender bodies, AIAA Journ. Vol.13, pp.1568–1575.

    Article  Google Scholar 

  • Schetz, J.A. & Stanley, F. (1972) Analysis of free turbulent mixing flows without a net momentum defect, AIAA Journ. Vol.10, pp.1524–1526.

    Article  Google Scholar 

  • Schildknecht, M., Miller, J.A. & Meier, G.E.A. (1979) The influence of suction on the structure of turbulence in fully developed pipe flow, Journ. Fluid Mech. Vol.90, pp.67–107.

    Article  Google Scholar 

  • Schlichting, H. (1932) Über diie Enstehung der Turbulenz. Math. Naturwiss. Klassen nachr. Gesellschaft der Wissenschaften, Göttingen, pp. 160–198.

    Google Scholar 

  • Schlichting, H. (1979) Boundary Layer Theory, Mc Graw Hill, 2nd. Edition, New York.

    MATH  Google Scholar 

  • Schneider, W. (1985) Decay of momentum in submerged jets. J. Fluid Mech., Vol.154, pp.91–110.

    Article  Google Scholar 

  • Schoolley, A. H. & Stewart, R.W. (1963) Experiments with a self-propelled body submerged in a fluid with a vertical density gradient, Journ. Fluid Mech., Vol.15, pp.83–98.

    Article  MATH  Google Scholar 

  • Schultz-Grünow, F. (1940) Neuer Reibungswiderstandgesetz für glatte Platten, Luftfahrtforsch. Vol.17, No.8, pp.239–246.

    Google Scholar 

  • Schwarz, W.H. & Cosart, W.P. (1961) The two-dimensional wall jet, Journ. Fluid Mech., Vol.10, Part 4, pp.481–495.

    Article  MATH  Google Scholar 

  • Sfeir, A.A. (1976) The velocity and temperature fields of rectangular jets. Int. J. Heat Mass Transfer, Vol.19, pp.1289–1297.

    Article  Google Scholar 

  • Sforza, P.M. & Stasi, W. (1979) Heated three-dimensional turbulent jets. Trans. ASME, J. Heat Transfer, Vol.101, pp.353–358.

    Article  Google Scholar 

  • Sharma, S.D. (1987) Development of pseudo-two-dimensional turbulent wakes. Phys. Fluids, Vol.30, No.2, pp.357–363.

    Article  Google Scholar 

  • Shih, T.H. & Lumley, J.L. (1985) Modeling of pressure correlation terms in Reynolds stress and scalar flux equations. Report FDA-85–3. Sibley School Mech. Aero. Engng, Cornell Univ.

    Google Scholar 

  • Shima, N. (1988) A Reynolds-stress model for near-wall and low-Reynolds number regions. J. Fluids Eng. Trans. ASME, Vol.110, pp.38–44.

    Article  Google Scholar 

  • Shima, N. (1993a) Prediction of turbulent boundary layers with a second-moment closure: Part I: Effects of periodic pressure gradient, wall transpiration, and free-stream turbulence. Trans. ASME, J. Fluids Eng. Vol.115, No.1, pp.56–63.

    Article  Google Scholar 

  • Shima, N. (1993b) Prediction of turbulent boundary layers with a second-moment closure: Part II: Effects of streamline curvature and spanwise rotation. Trans. ASME, J. Fluids Eng. Vol.115, No.1, pp.64–69.

    Article  Google Scholar 

  • Shlien, D.J. (1987) Observation of dispersion of entrained fluid in the self-preserving region of a turbulent jet. Journ. Fluid Mech. Vol.183, pp.163–173.

    Article  Google Scholar 

  • Simpson, R.L. (1971) The effect of a discontinuity in wall blowing on the turbulent incompressible boundary layer. Int. J. Heat Mass Transfer, Vol. 14, pp.2083–2097.

    Article  Google Scholar 

  • Sirviente, A.I. & Patel, V.C. (1996) Experiments in the swirling wake of a self-propelled axisymmetric body. In Proc. 11th. ONR Symp. Naval Hydrodynamics, National Acad. Sciences, Washington, D.C.

    Google Scholar 

  • Sislian, J.P. & Cusworth, R.A. (1986) Measurements of mean velocity and turbulent intensities in a free isothermal swirling jet. AIAA Journ. Vol.24, pp.303–309.

    Article  Google Scholar 

  • Smith, D.J. & Hugues, T. (1977) Some measurements in a turbulent circular jet in the presence of a co-flowing free stream. Aeron. Quarterly, pp.185–196. Aug.

    Google Scholar 

  • So, R.M.C. & Hwang, B.C. (1986a) On similarity solutions for turbulent and heated round jets, ZAMP, Vol.37, pp.624–631.

    Article  MATH  Google Scholar 

  • So, R.M.C. & Hwang, B.C. (1986b) Local equilibrium assumption for round jet calculations, AIAA Journ. Vol.24, No.8, pp.1388–1390.

    Article  Google Scholar 

  • So, R.M.C, Lai, Y.G., Zhang, H.S. & Hwang, B.C. (1991a) Second order near-wall turbulence closures. AIAA Journ. Vol.29, No.11, pp.1819–1835.

    Article  MATH  Google Scholar 

  • So, R.M.C, Zhang, H.S. & Speziale, C.G. (1991b) Near-wall modelling of the dissipation rate equation. AIAA Journ. Vol. 29, pp.2069–2076.

    Article  MATH  Google Scholar 

  • So, R.M.C, Sarkar, A., Gerodimos, G. & Zhang, J. (1997) A dissipation rate equation for low-Reynolds-number and near-wall turbulence. Theoret. Comp. Fluid Dynamics, Vol.9, pp.47–63.

    Article  MATH  Google Scholar 

  • Spalart, P.R. (1988) Direct simulation of a turbulent boundary layer up to Rθ = 1410. Journ. Fluid Mech. Vol.187, pp.61–98.

    Article  MATH  Google Scholar 

  • Spalding, D.B. (1961) A single formula for the law of the wall. J. Appl. Mech. Trans. ASME; Vol.28E, No.3, pp.455–457.

    Article  Google Scholar 

  • Speziale, C.G., Sarkar, S. & Gatski, T.B. (1991) Modeling the pressure-strain correlation of turbulence: An invariant dynamical approach. Journ. Fluid Mech. Vol.227, pp.245–272.

    Article  MATH  Google Scholar 

  • Sreenivasan, K.R. (1981) Approach to self-preservation in plane turbulent wakes. AIAA Journ. Vol.19, No.10, pp.1365–1367.

    Article  Google Scholar 

  • Sreenivasan, K.R. (1984) The azimuthal correlations of velocity and temperature fluctuations in an axisymmetric jet. Phys. Fluids, Vol.27, pp.867–875.

    Article  Google Scholar 

  • Sreenivasan, K.R. (1989) The turbulent boundary layer. In Gad El Hak, M. (Ed.) Frontiers in Experimental Fluid Mechanics, pp. 159–209. Springer Verlag, New York.

    Chapter  Google Scholar 

  • Sreenivasan, K.R. & Antonia, R.A. (1977) Properties of wall shear stress fluctuations in a turbulent duct flow. J. Appl. Mech. Trans. ASME, Vol.44, pp.389–385.

    Article  Google Scholar 

  • Sreenivasan, K.R. & Meneveau, C. J. (1986) The fractal facets of turbulence. Journ. Fluid Mech. Vol.173, pp.357–386.

    Article  MathSciNet  Google Scholar 

  • Sreenivasan, K.R. & Narasimha, R. (1982) Equilibrium parameters for two-dimensional turbulent wakes. J. Fluids Eng. Trans. ASME, Ser.I, Vol.104, pp.167.

    Article  Google Scholar 

  • Stewart, R.W. (1956) Irrotational motion associated with free turbulent flows. Journ. Fluid Mech. Vol.1, pp.593–604.

    Article  MATH  Google Scholar 

  • Sudou, K. & Hibara, H. (1991) Gas-jet impingement normal to a solid surface. Trans. JSME, Vol.57 (B), pp.3731–3737 (in Japanese).

    Google Scholar 

  • Symes, C.R. & Fink, L.E. (1977) In Proc. Structure and Mechanisms of Turbulence, Vol.1, Berlin.

    Google Scholar 

  • Syred, B. & Beer, J.M. (1974) Combustion in swirling flows: a review. Combustion and Flame, Vol.23, pp. 143–201.

    Article  Google Scholar 

  • Tailland, A. & Mathieu, J. (1967) Jet pariétal, J. Mécanique, Vol.6, pp. 103–131.

    Google Scholar 

  • Talmon, A.M., Kunen, J.M.G. & Ooms, G. (1986) Simultaneous flow visualization and Reynolds-stress measurement in a turbulent boundary layer. Journ. Fluid Mech. Vol. 163, pp.459–478.

    Article  Google Scholar 

  • Tanaka, T. & Tanaka, E. (1976) Experimental study of a radial turbulent jet, (1st. Report, effect of nozzle shape on a free jet). Bull. JSME, Vol.19, No133, pp.792–799.

    Google Scholar 

  • Tani, I. & Komatsu, Y. (1966) Impingement of a round jet on a flat surface. Proc. 11th. Int. Congress Appl. Mech. (Görtier, H., Ed.) Springer Verlag, New York, pp.672–676.

    Google Scholar 

  • Tchen, CM. (1953) On the spectrum of energy in turbulent shear flow. J. Res. Nat. Bureau Standards, Vol.50, pp.51–62.

    Article  MATH  Google Scholar 

  • Teitel, M. & Antonia, R.A. (1990) The interaction region of a turbulent duct flow. Phys. Fluids, Vol. A2, No.5, pp.808–813.

    Google Scholar 

  • Tennekes, H. & Lumley, J.L. (1972) A first course in turbulence, MIT Press.

    Google Scholar 

  • Thomas, R.M. (1973) Conditional sampling and other measurements in a plane turbulent wake. J. Fluid Mech., Vol.57, pp.549.

    Article  Google Scholar 

  • Thomas, F.O. (1991) Structure of mixing layers and jets. Appl. Mech. Rev. Vol.44, No.3, pp.119–153.

    Article  Google Scholar 

  • Thomas, F.O. & Brehob, E.G. (1986). An investigation of large scale structure in the similarity region of a two-dimensional turbulent jet. Phys. Fluids, Vol. 29, No.6, pp.1788–1795.

    Article  Google Scholar 

  • Thomas, F.O. & Chu, H.C. (1989) An experimantal investigation of the transition of a planar jet : subharmonic suppression and upstream feedback. Phys. Fluids, Vol. A1, No.9, pp.1566–1587.

    Google Scholar 

  • Thomas, F.O. & Goldschmidt, V.W. (1983) Interaction of an acoustic disturbance and a two-dimensional turbulent jet: experimental data. Trans. ASME I: J. Fluids Eng. Vol.105, pp.134–139.

    Article  Google Scholar 

  • Thomas, F.O. & Goldschmidt, V.W. (1985) The possibility of a resonance mechanism in the developing two-dimensional jet. Phys. Fluids, Vol.28, pp.3510–3514 .

    Google Scholar 

  • Thomas, F.O. & Goldschmidt, V.W. (1986) Structure characteristics of a developing turbulent plane jet. Journ. Fluid Mech. Vol.163, pp.227–256.

    Article  Google Scholar 

  • Thomas, F.O. & Prakash, K.M.K. (1991) An experimental investigation of the natural transition of an untuned plane jet. Phys. Fluids, Vol. A3, No.1, pp.90–105.

    Google Scholar 

  • Tollmien, W. (1926) Die Berechnung turbulenter Ausbreitungsvorgange. Z. Angew. Math. Mech. Vol.6, pp.468–478.

    Article  MATH  Google Scholar 

  • Townsend, A.A. (1947) Measurements in the turbulent wake of a cylinder. Proc. Roy. Soc. London, Vol.A190, pp.551.

    Google Scholar 

  • Townsend, A.A. (1949) The fully developed turbulent wake of a circular cylinder. Austral. J. Sci. Res. Vol.2, pp.451.

    Google Scholar 

  • Townsend, A.A. (1956) The properties of equilibrium boundary layers. Journ. Fluid Mech. Vol.1, pp.561–573.

    Article  MathSciNet  MATH  Google Scholar 

  • Townsend (1976) The Structure of Turbulent Shear Flow. 2nd. Edn. Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  • Townsend, A.A. (1979) Flow patterns of large eddies in a wake and in a boundary layer. Journ. Fluid Mech. Vol.95, pp.515–537.

    Article  Google Scholar 

  • Trentacoste, N. & Sforza, P. (1967) Further experimental results for three-dimensional free jets. AIAA Journ. Vol.5, No.5, pp.885–891.

    Article  Google Scholar 

  • Tsai, H.M. & Leslie, D.C. (1990) Large-eddy simulation of a developing turbulent boundary layer at a low Reynolds number. Int. J. Num. Meth. Fluids, Vol.10, pp.519–555.

    Article  Google Scholar 

  • Tso, J. & Hussain, A.K.M.F. (1989) Organized motions in a fully developed turbulent axisymmetric jet. Journ. Fluid Mech. Vol. 205, pp.425–448.

    Article  Google Scholar 

  • Tso, J., Kovasznay, L.S.G., Hussain, A.K.M.F. (1981) Search for large-scale coherent structure in the nearly self-preserving region of a turbulent axisymmetric jet. J. Fluids Eng. Trans. ASME, Vol. 103, pp.503–508.

    Article  Google Scholar 

  • Turan, Ö, Azad, R.S. & Kassab, S.Z. (1987) Experimental and theoretical evaluation of the (math) spectral law. Phys.Fluids, Vol. 39, No.11, pp.3463–3474 .

    Article  Google Scholar 

  • Tuve, G.L. (1953) Air velocity in ventilating jets. In Heating, Piping and Air Conditioning.

    Google Scholar 

  • Uberoi, M.S. & Freymuth, P. (1969) Spectra of turbulence in wakes behind circular cylinders. Phys. Fluids, Vol.12, pp.1359–1363.

    Article  Google Scholar 

  • Uberoi, M.S. & Freymuth, P. (1970) Turbulence energy balance and spectra of axisymmetric wake, Phys. Fluids, Vol.13, No.9, pp.2205–2210.

    Article  Google Scholar 

  • Ueda, H. & Hinze, J.O. (1975) Fine-structure turbulence in the wall region of a turbulent boundary layer, Journ.Fluid Mech., Vol. 67, Part 1, pp.125–143.

    Article  Google Scholar 

  • Wall, K.M. & Taulbee, D. (1996) Application of a nonlinear stress-strain model to axisymmetric turbulent swirling flows. Int. J. Heat Fluid Flow, Vol.17, pp.116–123.

    Article  Google Scholar 

  • Wallace, J.M., Brodkey, R.S. & Eckelmann, H. (1977) Pattern recognized structures in bounded turbulent shear flows, Journ. Fluid Mech. Vol.83, pp.673–693.

    Article  Google Scholar 

  • Wei, T. & Willmarth, W.W. (1989) Reynolds-number effects on the structure of a turbulent channel flow. Journ.Fluid Mech. Vol.204, pp.57–95.

    Article  Google Scholar 

  • Weir, A.D. & Bradshaw, P. (1975) Resonance and other oscillations in the initial region of a plane turbulent jet. I.C. Aero. Report 75–07, Deptmt Aeronautics, Imperial College, London, England.

    Google Scholar 

  • Weir, A.D., Wood, D.H. & Bradshaw, P. (1981) Interacting turbulent shear layers in a plane jet. Journ. FluidMech. Vol.107, pp.237–260.

    Google Scholar 

  • White, B.R. (1981) Low-Reynolds-number turbulent boundary layers. J. Fluids Eng. Trans. ASME I, Vol.103, pp.624–630.

    Article  Google Scholar 

  • Whitfield, D.L.T., Swafford, T.W. & Jacocks, J.L. (1980) Calculation of turbulent boundary layers with separation, reattachment and viscous-inviscid interaction. AIAA Paper 80–1439.

    Google Scholar 

  • Wilcox, D.C. (1993) Turbulence modelling for CFD, Griffin. Wilcox, D.C. & Traci, R.M. (1976) A complete model of turbulence, AIAA Paper 76–351.

    Google Scholar 

  • Wille, R. (1963) Beitrage zur Phänomenologie der Freistrahlen, Z. Flugwiss. Vol.11, pp.222–233.

    Google Scholar 

  • Willmarth, W.W. & Lu, S.S. (1972) Structure of Reynolds stress near the wall. Journ. Fluid Mech., Vol.55, Part 1, pp.65–92.

    Article  Google Scholar 

  • Witze, P.O. & Dwyer, H.A. (1976) The turbulent radial jet, Journ. Fluid Mech., Vol.75, Part 3, pp.401–417.

    Article  Google Scholar 

  • Wygnanski, I., Champagne, F. & Marasli, B. (1986) On the large-scale structures in two-dimensional, small-deficit, turbulent wakes, J. Fluid Mech. Vol. 168, pp.31–71.

    Article  Google Scholar 

  • Wygnanski, I. & Fiedler, H. (1969) Some measurements in a self-preserving jet, J. Fluid Mech., Vol.38, Part 3, pp.577–612.

    Article  Google Scholar 

  • Wygnanski, I., Oster, D., Fieldler, H. & Dziomba, B. (1979) On the perseverance of a quasi-two-dimensional eddy structure in a turbulent mixing layer. Journ. Fluid Mech., Vol.93, Part 2, pp.325–335.

    Article  Google Scholar 

  • Wygnanski, I., Katz, Y. & Horev, E. (1992) On the applicability of various scaling laws to the turbulent jet. Journ.Fluid Mech. Vol.234, pp.669–690.

    Article  Google Scholar 

  • Xu, C, Zhang, Z., den Tonder, J.M.J. & Nieuwstadt, F.T.M. (1996) Origin of high kurtosis levels in the viscous sublayer. Direct numerical simulation and experiment. Phys. Fluids, Vol.8, No.7, pp. 1938–1944.

    Article  Google Scholar 

  • Yajnik, K.S. (1970) Asymptotic theory of turbulent channel and boundary layer flows, Journ. Fluid Mech., Vol.42, Part, pp.411–427.

    Article  MATH  Google Scholar 

  • Yoon, H.K.& Lilley, D.G. (1983) Five-hole Pitot probe time-mean velocity measurements in confined swirling flow. AIAA Paper AIAA-83–0315, Reno, Nevada.

    Google Scholar 

  • Zagarolla, M.V., Perry, A.E. & Smits, A.J.(1997) Log laws or power laws: the scaling in the overlap region. Phys. Fluids, Vol.9, No.7, pp.2094–2100.

    Article  MathSciNet  Google Scholar 

  • Zaman, K.B.M.Q. & Hussain, A.K.M.F. (1981) Taylor Hypothesis and large-scale coherent structures. Journ. FluidMech. Vol.112, pp.379–396.

    Google Scholar 

  • Zaric, Z. (1972) Wall turbulence effects. Adv. Heat transfer, Vol.8, pp.825.

    Google Scholar 

  • Zhou, M.D. & Wygnanski, I. (1993) Parameters governing the turbulent wall jet in an external stream. AIAAJourn. Vol.31, No.5, pp.848–853.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piquet, J. (1999). Turbulent Two-Dimensional Shear Flows. In: Turbulent Flows. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03559-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03559-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08475-1

  • Online ISBN: 978-3-662-03559-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics