Skip to main content

The Equations of Motion

  • Chapter
  • 826 Accesses

Abstract

In this chapter, we introduce, with particular reference to the incompressible case, the general system of Navier-Stokes equations. They are capable of describing most phenomena observed in fluid mechanics, including turbulence which is the major issue of this book. However, this system of equations is an approximation which is produced on the basis of more fundamental assumptions of continuum mechanics, namely that any material, fluid or solid, consists of continuous matter which has a definite density, velocity, and internal energy at every point. This matter cannot be destroyed nor created. It obeys Newton’s classical law of mechanics and also certain thermodynamical laws. Moreover, contiguous regions of the medium are assumed to exert forces on each other across their common boundary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashurst, W.T., Kerstein, A.R., Kerr, R.M. & Gibson, C.H. (1987a) Alignment of Vorticity and Scalar Gradient with Strain Rate in Simulated Navier-Stokes Turbulence. Phys. Fluids, Vol.30, pp.2343–2353.

    Article  Google Scholar 

  • Ashurst, W.T., Chen, J.Y. & Rogers, M.M. (1987b) Pressure gradient alignment with strain rate and scalar gradient in simulated Navier-Stokes turbulence. Phys. Fluids, Vol. 30, pp.3293–3294.

    Article  Google Scholar 

  • Batchelor, G.K. (1967) Introduction to Fluid Dynamics. Cambridge Univ. Press.

    MATH  Google Scholar 

  • Cantwell, B.J. (1992) Exact solution of a restricted Euler equation for the velocity-gradient tensor. Phys. Fluids, Vol.A4, pp.782.

    MathSciNet  Google Scholar 

  • Chong, M.S., Perry, A.E. & Cantwell, B.J. (1990) A general classification of three-dimensional flow fields. Phys. Fluids, Vol.A2, No.5, pp.765–777.

    MathSciNet  Google Scholar 

  • Dresselhaus, E. & Tabor, M. (1989) The Persistence for Strain in Dynamical Systems. J. Phys. A: Math. Gen. Vol.22, 971–984.

    Article  MathSciNet  Google Scholar 

  • Dresselhaus, E. & Tabor, M. (1991) The kinematics of stretching and alignment of material elements in general flow fields. J. Fluid Mech. Vol. 236, pp.415–444.

    Article  MathSciNet  Google Scholar 

  • Gibbon, J.D. & Heritage, M. Angular dependence and growth of vorticity in the three-dimensional Euler equations. Phys. Fluids, Vol.9, No.4, pp.901–909.

    Google Scholar 

  • Herring, J.R. & Métais, O. (1989) Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. Vol.202, pp.97.

    Article  Google Scholar 

  • Hunt, J.C.R., Abell, C.J., Peterka, J.A. & Woo, H. (1978) Kinematical studies of the flow around free or surface-mounted obstacles: applying topology to flow visualization. J. Fluid Mech. Vol.86, pp. 179–200.

    Article  Google Scholar 

  • Jeong, J. & Hussain, F. (1994) On the identification of a vortex. J. Fluid Mech. Vol.285, pp.69–94.

    Article  MathSciNet  Google Scholar 

  • Melander, M. & Hussain, F. (1993a) Cross-linking of two Antiparallel Vortex Tubes. Phys. Fluids, A5, pp.633–636.

    MathSciNet  Google Scholar 

  • Melander, M. & Hussain, F. (1993b) Polarized Vorticity Dynamics of a Vortex Column. Phys. Fluids, A5, pp.1992–2003.

    MathSciNet  Google Scholar 

  • Moser, R. & Rogers, M. (1993) The three-dimensional evolution of a plane mixing-layer: pairing and transition to turbulence. J. Fluid Mech. Vol.247, pp.275–320.

    Article  MATH  Google Scholar 

  • Ohkitani, K. (1993) Eigenvalue problems in three-dimensional Euler flows. Phys. Fluids, Vol. A5, No.10, pp.2570–2572.

    MathSciNet  Google Scholar 

  • Ohkitani, K. & Kishiba, S. (1994) Non local nature of vortex stretching in an in viscid fluid. Phys. Fluids, Vol. A7, pp.411.

    MathSciNet  Google Scholar 

  • Polifke, W. (1991) Statistics of helicity fluctuations in homogeneous turbulence. Phys. Fluids, Vol.A3, No.1, pp.115–129.

    MathSciNet  Google Scholar 

  • Pumir, A. & Siggia, E. (1990) Collapsing solutions to the 3D Euler equations. Phys. Fluids, Vol.A2, pp.220–241.

    MathSciNet  Google Scholar 

  • She, Z.S., Jackson, E. & Orszag, S.A. (1991) Structure and dynamics of homogeneous turbulence: models and simulations. Proc. Roy. Soc. London, Vol.A434, pp.101–124.

    Google Scholar 

  • Shtilman, L., Pelz, R. & Tsinober, A. (1988) Numerical investigation of helicity in turbulent flows. Computers and Fluids, Vol.16, pp.341–347.

    Article  Google Scholar 

  • Shtilman, L. & Polifke, W. (1989) On the mechanism of the reduction of non linearity in the incompressible Navier-Stokes equation. Phys. Fluids A, Vol.1, No.5, pp.778–780.

    Article  Google Scholar 

  • Shtilman, L., Spector, M. & Tsinober, A. (1993) On some kinematic versus dynamic properties of homogeneous turbulence. J. Fluid Mech. Vol.247, pp.65–77.

    Article  MATH  Google Scholar 

  • Soria, J., Sondergaard, R., Cantwell, B.J., Chong, M.S. & Perry, A.E. (1994) A study of fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids, Vol. A6, No.2, pp.871–884.

    Article  Google Scholar 

  • Spalart, P.R. (1988) Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech. Vol.187, pp.61–98.

    Article  MATH  Google Scholar 

  • Truesdell, C. W. & Toupin, R.A. (1960) The Classical Field Theories. Handb. Physik, Vol.III/1, 226–793; Flügge, S. (Ed.) Springer Verlag, Berlin.

    Google Scholar 

  • Tsinober, A., Kit, E. & Dracos, T. (1991) Measuring invariant frame independent quantities composed of velocity derivatives in turbulent flows. In Johansson, A.V. & Alfredsson, P.H. (Eds.) Advances in Turbulence. Vol.3, pp.514–523. Springer Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Tsinober, A., Kit, E. & Dracos, T. (1992) Experimental investigation of the field of velocity gradients. J. Fluid Mech. Vol.242, pp.169–192.

    Article  Google Scholar 

  • Vieillefosse, P. (1984) Internal motion of a small element of fluid in an inviscid flow. Physica A, Vol.125, pp.150–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Zabusky, N.J. & Melander, M.V. (1989) Three-dimensional vortex tube reconnection morphology for orthogonally offset tubes. Physica D, Vol.37, pp.555–562.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piquet, J. (1999). The Equations of Motion. In: Turbulent Flows. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03559-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03559-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08475-1

  • Online ISBN: 978-3-662-03559-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics