Goals for Next-Generation Wafer Cleaning Technology

From the Viewpoint of Wafer Surface Conditioning
  • Nahomi Aoto
Chapter

Abstract

In order to ensure high device performance and reliability in the next generation of ULSI, what is required of next-generation cleaning? First, the attainment of a high level of cleanliness which corresponds to the levels of miniaturization and high integration. This is the basic cleaning performance, but at levels even higher than have been required in the past. Precision cleaning which sufficiently controls metallic and particle contamination on the wafer is the technology that must be achieved as a prerequisite of device manufacturing. High-performance cleaning is also extremely important to ensure high yields in future mass production. In order to accomplish this goal, it is necessary to establish an even more advanced foundation for cleaning technology.

Keywords

Surfactant Crystallization Ozone Expense Polystyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Shimono and M. Tsuji: Proc. of 1st Workshop on Ultra Clean Technology, 50, Tokyo (1989).Google Scholar
  2. [2]
    M. Takiyama et al.: Proc. of 19th Workshop on Ultra Clean Technology, 94, Tokyo (1992).Google Scholar
  3. [3]
    R. Takizawa, T. Nakanishi, K. Honda, and A. Ohsawa: Ext. Abstracts of the 20th Conference on Solid State Devices and Materials, 207, Tokyo (1987).Google Scholar
  4. [4]
    R. Sugino, Y. Nara, T. Yamazaki, S. Watanabe, and T. Ito: Ext. Abstracts of the 19th Conference on Solid State Devices and Materials, 207, Tokyo (1987).Google Scholar
  5. [5]
    S. Verhaverbeke, M. Meuris, M. Schaekers, L. Haspeslagh, P. Mertens, M. M. Heyns, R. De Blamk, and A. Philipssian: Symposium of VLSI Technology Digest of Technical Papers, 22, Seattle (1992).Google Scholar
  6. [6]
    T. Ohmori, T. Fukumoto, and T. Kato: Ext. Abstracts of the 176th ECS Meeting, 89–2, 551, Hollywood (1989).Google Scholar
  7. [7]
    H. Kikuyama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, and T. Ohmi: IEEE Trans. on Semiconductor Manufacturing 3 (3), 99–108 (1990).CrossRefGoogle Scholar
  8. [8]
    G. S. Higashi, Y. J. Chabal, G. W. Trucks, and K. Raghavachari: Appl. Phys. Lett. 56 (7), 656–658 (1990).CrossRefGoogle Scholar
  9. [9]
    S. Watanabe, M. Shigeno, N. Nakayama, and T. Ito: Ext. Abstracts of the 1991 International Conference on Solid State Devices and Materials, 502, Yokohama (1991).Google Scholar
  10. [10]
    E. Ikawa, S. Sugito, N. Aoto, and Y. Kurogi: Symposium of VLSI Technology Digest of Technical Papers. 27. Ka.rnizawa (1987).Google Scholar
  11. [11]
    J. Tong, C. Peterson, and D. Grant: Ext. Abstracts of the 180th ECS Meeting, 753, Phoenix (1991)Google Scholar
  12. [12]
    T. Ohmi, T. Isagawa, M. Kogure, and T. Imaoka: J. Electrochemical Soc. 140, (3), 804–810 (1993).CrossRefGoogle Scholar
  13. [13]
    H. Aoki, M. Nakamori, N. Aoto, and E. Ikawa: Symposium of VLSI Technology Digest of Technical Papers, 107, Kyoto (1993).Google Scholar
  14. [14]
    N. Aoto, M. Nakamori, H. Hada, T. Kunio, and E. Ikawa: Ext. Abstracts of the 1993 International Conference on Solid State Devices and Materials, 101, Makuhari (1993).Google Scholar
  15. [15]
    N. Aoto, M. Nakamori, S. Yamasaki, H. Hada, N. Ikarashi, K. Ishida, Y. Tenaoka, and I. Nishiyama: J. Appl. Phys. 77, (8), 3899–3907 (1995).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Nahomi Aoto
    • 1
  1. 1.NECJapan

Personalised recommendations