Floral Biology

  • S. Vogel
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 3)


Having ranked for a long time as a taxonomic equivalent of the dicots, the monocots are now considered as representing a clade nested within the basal dicotyledonous angiosperms. Nevertheless, the monocotyledonous clade stands out from all the remaining angiosperm lineages by both its uniformity on the one hand and its high degree of diversity on the other: shoot organization, leaf structure, and the conformation of floral organs are much more homogeneous than within most dicotyledons. In contrast, diversification into a wealth of vegetative life styles, as well as pollination systems, even if based on a relatively stereotypic fundamental construction mode, appear to repeat, and equate, the diversification of the rest of the angiosperms together. This reflects the enormous evolutionary potential and success of the group which, in terms of species number, accounts for almost one fourth of the flowering plants.


Pollen Flower Floral Biology Perigone Tube Septal Nectary Poricidal Anther 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

  1. Barrett, S.C.H. 1993. The evolution of heterostyly. Berlin: Springer.Google Scholar
  2. Barrett, S.C.H., Lloyd, D.G., Arroyo, J. 1993. Stylar polymorphisms and the evolution of heterostyly in Narcissus, pp. 339–376, in: Lloyd D.G., Barrett, S.C.H. (eds.) Floral biology. Studies on floral evolution in animal-pollinated plants. New York: Chapman Hall.Google Scholar
  3. Biedinger, N., Barthlott, W. 1993. Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten I: Monocotyledoneae. Trop. Subtrop. Pflanzenwelt 86. F. Steiner, Stuttgart.Google Scholar
  4. Boehme, S. 1988. Bromeliaceenstudien. III. Vergleichende Untersuchung zu Bau, Lage und systematischer Verwertbarkeit der Septalnektarien von Bromeliaceen. Trop. Subtrop. Pflanzenwelt (Akad. Wiss. Lit. Mainz) 62. 154 pp.Google Scholar
  5. Borg-Karlson, A.K. 1990. Chemical and ethological studies of pollination in the genus Ophrys (Orchidaceae). Phytochemistry 29: 1359–1387.CrossRefGoogle Scholar
  6. Brown, G.K., Gilmartin A.J. 1989. Stigma types in Bromeliaceae–a systematic survey. Syst. Bot. 14: 110–132.CrossRefGoogle Scholar
  7. Charlesworth, D. 1985. Distribution of dioecy and self- incompatibility in angiosperms. In: Greenwood, P.H., Slatkin, M. (eds.) Evolution: essays in honour of John Maynard Smith. Cambridge Univ. Press, Cambridge, pp. 237–268.Google Scholar
  8. Classen-Bockhoff, R. 1991. Untersuchungen zur Konstruktion des Bestäubungsapparates von Thalia geniculata (Marantaceae). Bot. Acta 194: 183–193.Google Scholar
  9. Connor, H.E. 1979. Breeding systems in the grasses: a survey. NZJ. Bot. 17: 547–574.Google Scholar
  10. Cook, C.D.K. 1982. Pollination mechanisms in the Hydrocharitaceae. In: Symoens, J.J., Hooper, S.S., Compère, P. (eds.) Studies on aquatic vascular plants. Roy. Bot. Soc. Brussels, pp. 1–15.Google Scholar
  11. Cox, P.A. 1990. Pollination and the evolution of breeding systems in Pandanaceae. Ann. Mo. Bot. Gard. 77: 816–840.Google Scholar
  12. Cox, P.A., Knox, R.B. 1989. Two-dimensional pollination in hydrophilous plants: convergent evolution in the genera Halodule (Cymodoceaceae), Halophila (Hydrocharitaceae), Ruppia (Ruppiaceae), and Lepilaena (Zanichelliaceae). Am. J. Bot. 76: 164–175.CrossRefGoogle Scholar
  13. Dafni, A., Bernhardt, P. 1990. Pollination of terrestrial orchids of southern Australia and the Mediterranean region. In: Hecht, M.K., Wallace, B., Macyntire, R.J. (eds.) Evol. Biol. 24: 193–252.Google Scholar
  14. Dafni, A., Ivri, Y., Brantjes, N.B.M. 1981. Pollination of Serapias vomeracea Briq. (Orchidaceae) by imitation of holes for sleeping solitary male bees (Hymenoptera). Acta Bot. Neerl. 30: 60–73.Google Scholar
  15. Dafni, A., Bernhardt, P., Shmida, A., Ivry, Y., Greenbaum, S., O’Toole, Ch., Losito, L. 1990. Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Isr. J. Bot. 39: 81–92.Google Scholar
  16. Dahlgren, R.M.T., Clifford, H.T. 1982. The monocotyledons, a comparative study. London: Academic Press.Google Scholar
  17. Dahlgren, R.M.T. et al. 1985. See general references.Google Scholar
  18. Daumann, E. 1970. Das Blütennektarium der Monoko- tyledonen unter besonderer Berücksichtigung seiner systematischen und phylogenetischen Bedeutung. Fedde’s Repert. 80: 463–590.CrossRefGoogle Scholar
  19. Daumann, E. 1974. Zur Frage nach dem Vorkommen eines Septalnektariums bei Dicotyledonen, zugleich ein Beitrag zur Blütenmorphologie und Bestäubungsökologie von Buxus L. und Cneorum L. Preslia 46: 97–109.Google Scholar
  20. De Nettancourt, D. 1977. Incompatibility in angiosperms. Berlin Heidelberg New York: Springer.CrossRefGoogle Scholar
  21. Dixon, K.W. 1985. The underground orchids of Australia–an appraisal. Orchidarian 8: 75–79.Google Scholar
  22. Dressler, R. 1992. Biology of the orchid bees (Euglossini). Ann. Rev. Ecol. Syst. 13: 373–394.CrossRefGoogle Scholar
  23. East, E.M. 1940. The distribution of self-sterility in the flowering plants. Proc. Am. Philos. Soc. 82: 449–518.Google Scholar
  24. Endlicher, S. (1836–1840). Genera plantarum, Vol. 5. Beck, Vienna.Google Scholar
  25. Endress, P. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge: Cambridge Univ. Press.Google Scholar
  26. Endress, P. 1995. Major evolutionary traits of monocot flowers. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, L.J. (eds.) Monocotyledons: systematics and evolution. Royal Botanic Garden, Kew, pp. 43–79.Google Scholar
  27. Faden, R.B. 1992. Floral attraction and floral hairs in the Commelinaceae. Ann. Mo. Bot. Gard. 79: 46–52.CrossRefGoogle Scholar
  28. Faegri, K. 1986. The solanoid flower. In: Alexander I.J., Gregory N.M. (eds.) Bot. Soc. Edinburgh 150th Anniversary Supple, Transactions, Edinburgh, pp. 51–59.Google Scholar
  29. Fryxell, P.H. 1957. Mode of reproduction of higher plants. Bot. Rev. 23: 135–233.CrossRefGoogle Scholar
  30. Goldblatt, J.C. 1990. Phylogeny and classification of Iridaceae. Ann. Mo. Bot. Gard. 77: 607–627.CrossRefGoogle Scholar
  31. Goldblatt, P., Bernhardt, P. 1990. Pollination biology of Nivenia (Iridaceae) and the presence of heterostylous self- compatibility. Isr. J. Bot. 39: 93–111.Google Scholar
  32. Goldblatt, P., Manning, J.C. 1996. Aristeas and beetle pollination. Veld Flora 82: 17–19.Google Scholar
  33. Gottsberger, G., Amaral, A. 1984. Pollination strategies in Brazilian Philodendron species. Ber. Dtsch. Bot. Ges. 97: 391–410.Google Scholar
  34. Gottsberger, G., Silberbauer-Gottsberger, I. 1991. Olfactory and visual attraction of Erioscelis emarginata (Cycloce- phalini, Dynastidae) to the inflorescences of Philodendron selloum (Aracee). Biotropica 23: 23–28.CrossRefGoogle Scholar
  35. Guedes, M. 1979. Morphology of seed plants. J. Cramer, Vaduz.Google Scholar
  36. Harborne, J.B. 1995. Small molecules and monocot classification. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, L.J. (eds.) Monocotyledons: systematics and evolution. Royal Botanic Garden, Kew, pp. 201–215.Google Scholar
  37. Henderson, A. 1986. A review of pollination studies in the Palmae. Bot. Rev. 52: 221–259.CrossRefGoogle Scholar
  38. Herendeen, P.S., Crane, P.R. 1995. The fossil history of the monocotyledons. In: Rudall, P.J., Cribb, P.J., Cutler, D.F., Humphries, L.J. (eds.) Monocotyledons: systematics and evolution. Royal Botanic Garden, Kew, pp. 1–23.Google Scholar
  39. Heslop-Harrison, Y., Shivanna K.R. 1977. The receptive surface of the angiosperm stigma. Ann. Bot. 41: 1233–1258.Google Scholar
  40. Ihlenfelds H.-D. 1971. über ontogenetische Abbreviationen und Zeitkorrelationsänderungen und ihre Bedeutung für Morphologie und Systematik. Ber. Dtsch. Bot. Ges. 84: 91–107.Google Scholar
  41. Kennedy, H. 1978. Systematics and pollination in the “closed- flowered” species of Calathea (Marantaceae). Univ. Calif. Publ. Bot. 7: 1–90.Google Scholar
  42. Knuth, P. ( 1899, 1904). Handbuch der Blütenbiologie 11,2 and 111,1. Leipzig: W. Engelmann.Google Scholar
  43. Kress, W.J. 1984. Pollination and reproduction biology of Heliconia. In: D’Arcy, W.G., Correa, A. (eds.) The botany and natural history of Panama. Monogr. Syst. Bot. Missouri Bot. Gard. 10: 267–271.Google Scholar
  44. Kunze, H. 1984. Vergleichende Studien an Cannaceen- und Marantaceenblüten. Flora 175: 301–318.Google Scholar
  45. Leinfellner, W. 1963. Das Perigon der Liliaceen ist staminaler Herkunft. Österr. Bot. Z. 110: 448–467.CrossRefGoogle Scholar
  46. Paulus, H., Gack, C. 1994. Signalfälschung als Bestäubungsstrategie in der mediterranen Orchideengattung Ophrys - Probleme der Artbildung und der Artabgrenzung. Proc. Int. Symp. European Orchids, Utrecht/Haarlem.Google Scholar
  47. Pettitt, J.M. 1980. Reproduction in seagrasses: nature of the pollen and receptive surface of the stigma in the Hydro- charitaceae. Ann. Bot. 45: 257–271.Google Scholar
  48. Pettitt, J., McConchie, L., Ducker, S., Knox, R. 1980. Unique adaptations for submarine pollination in seagrasses. Nature 286: 487–489.CrossRefGoogle Scholar
  49. Pettitt, H.M., Ducker, S.C., Knox, R.B. 1981. Submarine pollination. Sei. Am. 244 (3): 92–101.Google Scholar
  50. Pijl, L., van der, Dodson, C.H. 1960. Orchid flowers, their pollination and evolution. Fairchild Tropical Garden and University of Miami Press, Coral Gables.Google Scholar
  51. Ramirez, B.W., Gomez, P.L.D. 1978. Production of nectar and gums by flowers of Monstera deliciosa (Araceae) and of some species of Clusia (Guttiferae) collected by New World Trigona bees. Brenesia 14/15: 407–412.Google Scholar
  52. Richards, A.J. 1986. Plant breeding systems. London: George Allen Unwin.Google Scholar
  53. Schill, R., Dannenbaum, C., Jentzsch, E.-M. 1988. Untersuchungen an Bromeliennarben. Beitr. Biol. Pflanz. 63:221–252.Google Scholar
  54. Schill, R., Pfeifer, W. 1977. Untersuchungen and Orchideen- pollinien unter besonderer Berücksichtigung ihrer Feinskulptur. Pollen Spores 19: 5–118.Google Scholar
  55. Schmid, R. 1988. Reproductive versus extra-reproductive nectaries–historical perspective and terminological recommendations. Bot. Rev. 54: 230–239.CrossRefGoogle Scholar
  56. Silberbauer-Gottsberger, I. 1990. Pollination and evolution in palms. Phyton (Austria) 30: 213–233.Google Scholar
  57. Simpson, M.G. 1990. Phylogeny and classification of the Haemodoraceae. Ann. Mo. Bot. Gard. 77: 722–784.Google Scholar
  58. Simpson, M.G. 1993. Septal nectary anatomy and phylogeny of the Haemodoraceae. Syst. Bot. 18: 593–613.CrossRefGoogle Scholar
  59. Smets, E.F., Cresens, E.M. 1988. Types of floral nectaries and the concepts “character” and “character state”–a reconsideration. Acta Bot. Neerl. 37: 121–128.Google Scholar
  60. Soderstrom, T.R., Calderon, C.E. 1971. Insect pollination in tropical rain forest grasses. Biotropica 3: 1–16.CrossRefGoogle Scholar
  61. Sprengel, C.K. 1793. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Berlin: Vieweg.CrossRefGoogle Scholar
  62. Vogel, S. 1959. Organographie der kapländischen Ophrydeen, mit Bemerkungen zum Koaptations-Problem I, II.-Abh. Akad. Wiss. Lit. (Mainz) Math.-Naturwiss Kl. 6 and 7. F. Steiner, Wiesbaden.Google Scholar
  63. Vogel, S. 1966. Parfümsammelnde Bienen als Bestäuber von Orchideen und Gloxinia. Österr. Bot. Z. 113: 302–361.CrossRefGoogle Scholar
  64. Vogel, S. 1974. Ölblumen und ölsammelnde Bienen. Trop. Subtrop. Pflanzenwelt 7: 283–547.Google Scholar
  65. Vogel, S. 1978. Evolutionary shifts from reward to deception in pollen flowers. In: Richards, A.J. (ed.) The pollination of flowers by insects, London: Academic Press pp. 89–96.Google Scholar
  66. Vogel, S. 1981. Bestäubungskonzepte der Monokotylen und ihr Ausdruck im System. Ber. Dtsch. Bot. Ges. 94: 663–675.Google Scholar
  67. Vogel, S. 1984. Blütensekrete als akzessorischer Pollenkitt. Abstr. 1211 in Mitt. Tagung Dtsch. Bot. Ges. Vienna 9–14 Sept. 1984.Google Scholar
  68. Vogel, S. 1990. The role of scent glands in pollination. On the structure and function of osmophores. Smithsonian Inst. Libraries and the Nat. Sei. Foundation Washington. Amerind, New Delhi.Google Scholar
  69. Vogel, S. 1993. Betrug bei Pflanzen: Die Täuschblumen. Abh. Akad. Wiss. Lit. Mainz Math.-naturwiss Kl. Jg. 1993, 1. Stuttgart: F. Steiner.Google Scholar
  70. Weber, A. 1980. Die Homologie des Perigons der Zingibera- ceen. Ein Beitrag zur Morphologie und Phylogenie des Monokotylen-Perigons. Plant Syst. Evol. 133: 149–179.Google Scholar
  71. Williams, N.H., Whitten, W.M. 1983. Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol. Bull. 164: 355–395.CrossRefGoogle Scholar
  72. Winkler, H. 1906. über den Blütendimorphismus von Renanthera lowii. Ann. Jard. Bot. Buitenzorg 20: 1–12.Google Scholar
  73. Yeo, P.F. 1993. Secondary pollen presentation. Form, function and evolution. Plant. Syst. Evol. Suppl. 6. Vienna New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • S. Vogel

There are no affiliations available

Personalised recommendations