Skip to main content

A Water Channel Network in Cell Membranes of the Filter Chamber of Homopteran Insects

  • Conference paper
Book cover Dynamical Networks in Physics and Biology

Abstract

Water is the most ubiquitous molecule in the living cell and movement of water across the cell membrane accompanies fundamental cell functions. All biological membranes exhibit some water permeability as a result of diffusion through the lipid bilayer and osmotic gradients constitute the driving force for water flow. Osmotic water permeability is therefore of the highest relevance. However, some cells have the ability to transport water across their cell membrane at greatly accelerated rates, for example mammalian red blood cells, epithelial cells of the renal proximal tubules. Water permeability in such cells is simply too high to be accounted for by lipid-mediated diffusion, thus leading biophysicists to predict that water-selective channels must exist. The search for water channel began not surprisingly in tissues that had been already identified from physiological studies as having high water permeabilities. But the molecular basis of water channels remained elusive for a long time, since many attempts to determine its structure by biochemical approaches and expression cloning were unsuccessful. The reasons of this failure were linked to the inability of the water channel to be labeled by its substrate, the lack of highly specific inhibitors and the basal diffusional permeability of cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P., Preston G.M., Smith B.L., Jung J.S., Raina S., Moon C., Guggino W.B. and Nielsen S., Am. J. Physiol. 265 (1993) F463-F476.

    Google Scholar 

  • Beuron F., Le Cahérec F., Guillam M.T., Cavalier A., Garret A., Tassan J.P., Delamarche C., Schultz P., Mallouh V., Rolland J.P., Hubert J.F., Gouranton J. and Thomas D., J. Biol. Chem. 270 (1995) 17414–17422.

    Article  Google Scholar 

  • Cheng A., van Hoek A.N., Yeager M., Verkman A.S. and Mitra A.K., Nature 387 (1997) 627–630.

    Article  ADS  Google Scholar 

  • Gorin M.B., Yancey S.B., Cline J., Revel J.P. and Horwitz J., Cell. 39 (1984) 49–59.

    Article  Google Scholar 

  • Gouranton J., J. Microsc. Paris 7 (1968) 559–574.

    Google Scholar 

  • Hubert J.F., Thomas D., Cavalier A. and Gouranton J., Biol. Cell. 66 (1989) 155–163.

    Google Scholar 

  • Jap B. K. and Li H., J. Mol. Biol. 251 (1995) 413–420.

    Article  Google Scholar 

  • Jung J.S., Preston G.M., Smith B.L., Guggino W.B. and Agre P., J. Biol. Chem. 269 (1994) 14648–14654.

    Google Scholar 

  • Li H., Lee S. and Jap B.K., Nature Struct. Biol. 4 (1997) 263–265.

    Article  Google Scholar 

  • Le Cahérec F., Bron P., Verbavatz J.M., Garret A., Morel G., Cavalier A., Bonnec G., Thomas D., Gouranton J. and Hubert J.F., J. Cell. Sci. 109 (1995a) 1285–1295.

    Google Scholar 

  • Le Cahérec F., Deschamps S., Delamarche C., Pellerin I., Bonnec G., Guillam M.T., Thomas D., Gouranton J. and Hubert J.F., Eur. J. Biochem. 241 (1995b) 707–715.

    Article  Google Scholar 

  • Mitra A.K., van Hoek A.N., Wiener M.C., Verkman A.S. and Yeager M., Nature Struct. Biol. 2 (1995) 726–729.

    Article  Google Scholar 

  • Preston G.M., Caroll T.P., Guggino W.B. and Agre P., Science 256 (1992) 385–387.

    Article  ADS  Google Scholar 

  • Reizer J., Reizer A. and Saier M.H., Crit. Rev. Biochem. Mol. Biol. 28 (1993) 235–257.

    Article  Google Scholar 

  • Thomas D., Schultz P., Steven A.C. and Wall J., Biol. Cell. 80 (1994) 181–192.

    Google Scholar 

  • Walz T., Smith B.L., Zeidel, Engel A. and Agre P., J. Biol. Chem. 269 (1994) 1583–1586.

    Google Scholar 

  • Walz T., Typke D., Smith B.L., Agre P. and Engel A., Nature Struct. Biol. 2 (1995) 730–732.

    Article  Google Scholar 

  • Walz T., Hirai T., Murata K., Heymann J.B., Mitsuoka K., Fujiyoshi Y., Smith B.L., Agre P. and Engel A., Nature 387 (1997) 624–627.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag France

About this paper

Cite this paper

Bron, P. et al. (1998). A Water Channel Network in Cell Membranes of the Filter Chamber of Homopteran Insects. In: Beysens, D.A., Forgacs, G. (eds) Dynamical Networks in Physics and Biology. Centre de Physique des Houches, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03524-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03524-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65349-3

  • Online ISBN: 978-3-662-03524-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics