Promoter Structure of Class III Genes

  • Robert J. White
Part of the Biotechnology Intelligence Unit book series (BIOIU)

Abstract

The promoters of most class III genes include discontinuous intragenic structures, termed internal control regions (ICRs), that are composed of essential sequence blocks separated by nonessential nucleotides. The ICRs of 5S rRNA genes are sometimes referred to as type I. These comprise two functional domains: an Ablock and a second domain consisting of an intermediate element and a C-block. Most class III genes, including tRNA, VA, Alu, EBER, 7SL, 4.5S, B1, and B2 genes, have type II ICRs: these again have two domains, an A-block and a B-block. The Ablocks of types I and II are homologous and can substitute for one another in Xenopus, 1 although not in Neurospora.2 The A-block is located much further from the start site in type I than it is in type II promoters. As well as the ICR, extragenic sequences can also affect the strength of type I and II promoters. However, substitutions in the extragenic regions are generally well tolerated, unlike mutations in the ICR. In contrast, with type III promoters, such as those of the vertebrate U6 and 7SK genes, transcription is independent of intragenic elements and is dictated solely by 5′ flanking regions.3–8 A schematic illustration of the three types of class III promoter is provided in Figure 2.1.

Keywords

Maize Codon Lysine Sine Creatine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciliberto G, Raugei S, Constanzo F et al. Common and interchangeable elements in the promoters of genes transcribed by RNA polymerase III. Cell 1983; 32:725–733.CrossRefPubMedGoogle Scholar
  2. 2.
    Shi YG, Tyler BM. All internal promoter elements of Neurospora crassa 5S rRNA and tRNA genes, including the A boxes, are functionally gene-specific. J Biol Chem 1991; 266:8015–8019.PubMedGoogle Scholar
  3. 3.
    Murphy S, Di Liegro C, Melli M. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell 1987; 51:81–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Kleinert H, Benecke B-J. Transcription of human 7S K DNA in vitro and in vivo is exclusively controlled by an upstream promoter. Nucleic Acids Res 1988; 16:1319–1331.CrossRefPubMedGoogle Scholar
  5. 5.
    Kleinert H, Gladen A, Geisler M et al. Differential regulation of transcription of human 7 S K and 7 S L RNA genes. J Biol Chem 1988; 263:11511–11515.PubMedGoogle Scholar
  6. 6.
    Das G, Henning D, Wright D et al. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III. EMBO J 1988; 7:503–512.PubMedGoogle Scholar
  7. 7.
    Lobo SM, Hernandez N. A 7 bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter. Genes Dev 1989; 58:55–67.Google Scholar
  8. 8.
    Kunkel GR, Pederson T. Transcription of a human U6 small nuclear RNA gene in vivo withstands deletion of intragenic sequences but not of an upstream TATATA box. Nucleic Acids Res 1989; 17:7371–7379.CrossRefPubMedGoogle Scholar
  9. 9.
    Shaw KJ, Olsen MV. Effects of altered 5′-flanking sequences on the in vivo expression of a Saccharomyces cerevisiae tRNATyr gene. Mol Cell Biol 1984; 4: 657–665.PubMedGoogle Scholar
  10. 10.
    Bredow S, Surig D, Muller J et al. Activating-transcription-factor (ATF) regulates human 7S L RNA transcription by RNA polymerase III in vivo and in vitro. Nucleic Acids Res 1990; 18:6779–6784.CrossRefPubMedGoogle Scholar
  11. 11.
    Kleinert H, Bredow S, Benecke BJ. Expression of a human 7S K RNA gene in vivo requires a novel pol III upstream element. EMBO J 1990; 9:711–718.PubMedGoogle Scholar
  12. 12.
    Yuan Y, Reddy R. 5′ flanking sequences of human MRP/7–2 RNA gene are required and sufficient for the transcription by RNA polymerase III. Biochim Biophys Acta 1991; 1089:33–39.CrossRefPubMedGoogle Scholar
  13. 13.
    Sprague KU, Larson D, Morton D. 5′ flanking sequence signals are required for activity of silkworm alanine tRNA genes in homologous in vitro transcription systems. Cell 1980; 22:171–178.CrossRefPubMedGoogle Scholar
  14. 14.
    Gaeta BA, Sharp SJ, Stewart TS. Saturation mutagenesis of the Drosophila tRNAA gene B-box intragenic promoter element: requirements for transcription activation and stable complex formation. Nucleic Acids Res 1990; 18:1541–1548.CrossRefPubMedGoogle Scholar
  15. 15.
    Boyd DC, Turner PC, Watkins NJ et al. Functional redundancy of promoter elements ensures efficient transcription of the human 7SK gene in vivo. J Mol Biol 1995; 253:677–690.CrossRefPubMedGoogle Scholar
  16. 16.
    Martignetti JA, Brosius J. BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript. Mol Cell Biol 1995; 15:1642–1650.PubMedGoogle Scholar
  17. 17.
    Raymond GJ, Johnson JD. The role of non-coding DNA sequences in transcription and processing of yeast tRNA. Nucleic Acids Res 1983; 11:5969–5988.CrossRefPubMedGoogle Scholar
  18. 18.
    Wilson ET, Larson D, Young LS et al. A large region controls tRNA gene transcription. J Mol Biol 1985; 183:153–163.CrossRefPubMedGoogle Scholar
  19. 19.
    Gabrielsen OS, Oyen TB. The requirement for the A block promoter element in tRNA gene transcription in vitro depends on the ionic environment. Nucleic Acids Res 1987; 15:5699–5713.CrossRefPubMedGoogle Scholar
  20. 20.
    Wilson ET, Condliffe DP, Sprague KU. Transcriptional properties of BmX, a moderately repetitive silkworm gene that is an RNA polymerase III template. Mol Cell Biol 1988; 8:624–631.PubMedGoogle Scholar
  21. 21.
    Wolfe AP, Morse RH. The transcription complex of the Xenopus somatic 5 S RNA gene. A functional analysis of protein-DNA interactions outside of the internal control region. J Biol Chem 1990; 265:4592–4599.Google Scholar
  22. 22.
    Hall BD, Clarkson SG, Tocchini-Valentini G. Transcription initiation of eukaryotic transfer RNA genes. Cell 1982; 29:3–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Ciliberto G, Castagnoli L, Cortese R. Transcription by RNA polymerase III. Curr Topics Dev Biol 1983; 18:59–88.CrossRefGoogle Scholar
  24. 24.
    Sharp SJ, Schaack J, Cooley L et al. Structure and transcription of eukaryotic tRNA genes. CRC Crit Rev Biochem 1984; 19:107–144.CrossRefGoogle Scholar
  25. 25.
    Geiduschek FP, Tocchini-Valentini GP. Transcription by RNA polymerase III. Annu Rev Biochem 1988; 57:873–914.CrossRefPubMedGoogle Scholar
  26. 26.
    Sollner-Webb B. Surprises in polymerase III transcription. Cell 1988; 52:153–154.CrossRefPubMedGoogle Scholar
  27. 27.
    Murphy S, Moorefield B, Pieler T. Common mechanisms of promoter recognition by RNA polymerases II and III. Trends Genet 1989; 5:122–126.CrossRefPubMedGoogle Scholar
  28. 28.
    Kunkel GR. RNA polymerase III transcription of genes that lack internal control regions. Biochim Biophys Acta 1991; 1088:1–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Sakonju S, Bogenhagen DF, Brown DD. A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5′ border of the region. Cell 1980; 19:13–25.CrossRefPubMedGoogle Scholar
  30. 30.
    Bogenhagen DF, Sakonju S, Brown DD. A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3′ border of the region. Cell 1980; 19:27–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Brown DD, Schlissel MS. A positive transcription factor controls the differential expression of two 5S RNA genes. Cell 1985; 42:759–767.CrossRefPubMedGoogle Scholar
  32. 32.
    Bogenhagen DF. The intragenic control region of the Xenopus 5S gene contains two factor A binding domains that must be aligned properly for efficient transcription initiation. J Biol Chem 1985; 260:6466–6471.PubMedGoogle Scholar
  33. 33.
    Pieler T, Appel B, Oei S-L et al. Point mutational analysis of the Xenopus laevis 5S gene promoter. EMBO J 1985; 4:1847–1853.PubMedGoogle Scholar
  34. 34.
    Pieler T, Oei S-L, Hamm J et al. Functional domains of the Xenopus laevis 5S gene promoter. EMBO J 1985; 4:3751–3756.PubMedGoogle Scholar
  35. 35.
    Pieler T, Hamm J, Roeder RG. The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 1987; 48:91–10o.CrossRefPubMedGoogle Scholar
  36. 36.
    Keller HJ, You QM, Romaniuk PJ et al. Additional intragenic promoter elements of the Xenopus 5S RNA genes upstream from the TFIIIA-binding site. Mol Cell Biol 1990; 10:5166–5176.PubMedGoogle Scholar
  37. 37.
    Wormington WM, Bogenhagen DF, Jordan E et al. A quantitative assay for Xenopus 5S RNA gene transcription in vitro. Cell 1981; 24:809–817.CrossRefPubMedGoogle Scholar
  38. 38.
    Sands MS, Bogenhagen DF. TFIIIA binds to different domains of 5S RNA and the Xenopus borealis 5S RNA gene. Mol Cell Biol 1987; 7:3985–3993.PubMedGoogle Scholar
  39. 39.
    Fradkin LG, Yoshinaga SK, Berk AJ et al. Human transcription factor TFIIIC2 specifically interacts with a unique sequence in the Xenopus laevis 5S rRNA gene. Mol Cell Biol 1989; 9:4941–4950.PubMedGoogle Scholar
  40. 40.
    Oei SL, Pieler T. A transcription stimulatory factor binds to the upstream region of Xenopus 5 S RNA and tRNA genes. J Biol Chem 1990; 265:7485–7491.PubMedGoogle Scholar
  41. 41.
    McConkey GA, Bogenhagen DF. Transition mutations within the Xenopus borealis somatic 5S RNA gene can have independent effects on transcription and TFIIIA binding. Mol Cell Biol 1987; 7:486–494.PubMedGoogle Scholar
  42. 42.
    Xing YY, Worcel A. The C-terminal domain of transcription factor IIIA interacts differently with different 5S RNA genes. Mol Cell Biol 1989; 9:499–514.PubMedGoogle Scholar
  43. 43.
    Fedoroff NV, Brown DD. The nucleotide sequence of oocyte 5S DNA in Xenopus laevis. I. The AT-rich spacer. Cell 1978; 13:701–716.CrossRefPubMedGoogle Scholar
  44. 44.
    Peterson RC, Doering JL, Brown DD. Characterization of two Xenopus somatic 5S DNA and one minor oocyte-specific DNA. Cell 1980; 20:131–141.CrossRefPubMedGoogle Scholar
  45. 45.
    Andrews DL, Millstein L, Hamkalo BA et al. Competition between Xenopus satellite I sequences and pol III genes for stable transcription complex formation. Nucleic Acids Res 1984; 12:7753–7769.CrossRefPubMedGoogle Scholar
  46. 46.
    Millstein L, Eversole-Cire P, Blanco J et al. Differential transcription of Xenopus oocyte and somatic-type 5S genes in a Xenopus oocyte extract. J Biol Chem 1987; 262:1–11.Google Scholar
  47. 47.
    Peck LJ, Millstein L, Eversole-Cire P et al. Transcriptionally inactive oocyte-type 5S RNA genes of Xenopus laevis are complexed with TFIIIA in vitro. Mol Cell Biol 1987; 7:3503–3510.PubMedGoogle Scholar
  48. 48.
    Reynolds W. Effect of sequence differences between somatic and oocyte 5S RNA genes on transcriptional efficiency in an oocyte S15o extract. Mol Cell Biol 1988; 8:5056–5058.PubMedGoogle Scholar
  49. 49.
    Reynolds WF, Azer K. Sequence differences upstream of the promoters are involved in the differential expression of the Xenopus somatic and oocyte 5S RNA genes. Nucleic Acids Res 1988; 16:3391–3403.CrossRefPubMedGoogle Scholar
  50. 50.
    Reynolds WF. Sequences preceding the minimal promoter of the Xenopus somatic 5S RNA gene increase binding efficiency for transcription factors. Nucleic Acids Res 1989; 17:9381–9394.PubMedGoogle Scholar
  51. 51.
    Wingender E, Frank R, Blocker H et al. Complete synthesis and transcription in vitro of a gene coding for human ribosomal 5S RNA. Gene 1988; 64:77–85.CrossRefPubMedGoogle Scholar
  52. 52.
    Sorensen PD, Frederiksen S. Characterization of human 5S rRNA genes. Nucleic Acids Res 1991; 19:4147–4151.CrossRefPubMedGoogle Scholar
  53. 53.
    Sharp SJ, Garcia AD. Transcription of the Drosophila melanogaster 5S RNA gene requires an upstream promoter and four intragenic sequence elements. Mol Cell Biol 1988; 8:1266–1274.PubMedGoogle Scholar
  54. 54.
    Tyler BM. Transcription of Neurospora crassa 5S rRNA genes requires a TATA box and three internal elements. J Mol Biol 1987; 196:801–811.CrossRefPubMedGoogle Scholar
  55. 55.
    Morton DG, Sprague KU. In vitro transcription of a silkworm 5S RNA gene requires an upstream signal. Proc Natl Acad Sci USA 1984; 81:5519–5522.CrossRefPubMedGoogle Scholar
  56. 56.
    Selker EU, Morzycka-Wroblewska E, Stevens JN et al. An upstream signal is required for in vitro transcription of Neurospora 5S RNA genes. Mol Gen Genet 1986; 205:189–192.CrossRefPubMedGoogle Scholar
  57. 57.
    Garcia AD, O’Connell AM, Sharp SJ. Formation of an active transcription complex in the Drosophila melanogaster 5S RNA gene is dependent on an upstream region. Mol Cell Biol 1987; 7:2046–2051.PubMedGoogle Scholar
  58. 58.
    Smith TPL, Young LS, Bender LB et al. Silkworm TFIIIA requires additional class III factors for committment to transcription complex assembly on a 5S RNA gene. Nucleic Acids Res 1995; 23:1244–1251.CrossRefPubMedGoogle Scholar
  59. 59.
    Challice JM, Segall J. Transcription of the 5S rRNA gene of Saccharomyces cerevisiae requires a promoter element at +1 and a 14 base-pair internal control region. J. Biol Chem 1989; 264:20060–20067.PubMedGoogle Scholar
  60. 60.
    Taylor MJ, Segall J. Characterization of factors and DNA sequences required for accurate transcription of the Saccharomyces cerevisiae 5S RNA gene. J Biol Chem 1985; 260:4531–4540.PubMedGoogle Scholar
  61. 61.
    Lee Y, Erkine AM, Van Ryk DI et al. In vivo analyses of the internal control region in the 5S rRNA gene from Saccharomyces cerevisiae. Nucleic Acids Res 1995; 23:634–640.CrossRefPubMedGoogle Scholar
  62. 62.
    Murphy MH, Baralle FE. Construction and functional analysis of a series of synthetic RNA polymerase III promoters. J Biol Chem 1984; 259:10208–10211.PubMedGoogle Scholar
  63. 63.
    Galli G, Hofstetter H, Birnstiel ML. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature 1981; 294:626–631.CrossRefPubMedGoogle Scholar
  64. 64.
    Hofstetter H, Kressmann A, Birnstiel ML. A split promoter for a eukaryotic tRNA gene. Cell 1981; 24:573–585.CrossRefPubMedGoogle Scholar
  65. 65.
    Sharp S, DeFranco D, Dingermann T et al. Internal control regions for transcription of eukaryotic tRNA genes. Proc Natl Acad Sci USA 1981; 78:6657–6661.CrossRefPubMedGoogle Scholar
  66. 66.
    Ciliberto G, Castagnoli L, Melton DA et al. Promoter of a eukaryotic tRNAPro gene is composed of three noncontiguous regions. Proc Natl Acad Sci USA 1982; 79:1195–1199.CrossRefPubMedGoogle Scholar
  67. 67.
    Allison DS, Goh SH, Hall BD. The promoter sequence of a yeast tRNATYr gene. Cell 1983; 34: 655–664.CrossRefPubMedGoogle Scholar
  68. 68.
    Krayev AS, Markusheva TV, Kramerov DA et al. Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res 1982; 10:7461–7475.CrossRefPubMedGoogle Scholar
  69. 69.
    Folk WR, Hofsteter H, Birnstiel ML. Some bacterial tRNA genes are transcribed by eukaryotic RNA polymerase III. Nucleic Acids Res 1982; 10:7153–7162.CrossRefPubMedGoogle Scholar
  70. 70.
    Gruissem W, Prescott D, Greenberg BM et al. Transcription of E. coli and Euglena chloroplast tRNA gene clusters and processing of polycistronic transcripts in a HeLa cell-free system. Cell 1982; 30:81–92.CrossRefPubMedGoogle Scholar
  71. 71.
    Newman AJ, Ogden RC, Abelson J. tRNA gene transcription in yeast: effects of specified base substitutions in the intragenic promoter. Cell 1983; 35:117–125.CrossRefPubMedGoogle Scholar
  72. 72.
    Traboni C, Ciliberto G, Cortese R. Mutations in box B of the promoter of a eukaryotic tRNAPro gene affect rate of transcription, processing, and stability of the transcripts. Cell 1984; 36:179–187.CrossRefPubMedGoogle Scholar
  73. 73.
    Reyes VM, Newman A, Abelson J. Mutational analysis of the coordinate expression of the yeast tRNAArg-tRNAAsP gene tandem. Mol Cell Biol 1986; 6:2436–2442.PubMedGoogle Scholar
  74. 74.
    Nichols M, Bell J, Klekamp MS et al. Multiple mutations of the first gene of a dimeric tRNA gene abolish in vitro tRNA gene transcription. J Biol Chem 1989; 264:17084–17090.PubMedGoogle Scholar
  75. 75.
    Di Segni G, McConaughy BL, Shapiro RA et al. TAP1, a yeast gene that activates the expression of a tRNA gene with a defective internal promoter. Mol Cell Biol 1993; 13:3424–3433.PubMedGoogle Scholar
  76. 76.
    Folk WR, Hofstetter H. A detailed mutational analysis of the eukaryotic tRNAMet gene promoter. Cell 1983; 33:585–593.CrossRefPubMedGoogle Scholar
  77. 77.
    Ciampi MS, Melton DA, Cortese R. Site-directed mutagenesis of a tRNA gene: base alterations in the coding region affect transcription. Proc Natl Acad Sci USA 1982; 79:1388–1392.CrossRefPubMedGoogle Scholar
  78. 78.
    Willis I, Hottinger H, Pearson D et al. Mutations affecting excision of the intron from a eukaryotic dimeric tRNA precursor. EMBO J 1984; 3:1573–1580.PubMedGoogle Scholar
  79. 79.
    Dingermann T, Sharp S, Schaack J et al. Stable transcription complex formation of eukaryotic tRNA genes is dependent on a limited separation of the two intragenic control regions. J Biol Chem 1983; 258:10395–10402.PubMedGoogle Scholar
  80. 80.
    Baker RE, Carnier S, Sentenac A et al. Gene size differentially affects the binding of yeast transcription factor τ to two intragenic regions. Proc Natl Acad Sci USA 1987; 84:8768–8772.CrossRefPubMedGoogle Scholar
  81. 81.
    Fabrizio P, Coppo A, Fruscoloni P et al. Comparative mutational analysis of wildtype and stretched tRNALeu3 gene promoters. Proc Natl Acad Sci USA 1987; 84:8763–8767.CrossRefPubMedGoogle Scholar
  82. 82.
    Zasloff M, Santos T, Romeo P et al. Transcription and precursor processing of normal and mutant human tRNAiMet genes in a homologous cell-free system. J Biol Chem 1982; 257: 7857–7863.PubMedGoogle Scholar
  83. 83.
    Hipskind RA, Clarkson SG. 5′-flanking sequences that inhibit in vitro transcription of a Xenopus laevis tRNA gene. Cell 1983; 34:881–890.CrossRefPubMedGoogle Scholar
  84. 84.
    Joazeiro CAP, Kassavetis GA, Geiduschek EP. Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Genes Dev 1996; 10:725–739.CrossRefPubMedGoogle Scholar
  85. 85.
    Chalker DL, Sandmeyer SB. Sites of RNA polymerase III transcription initiation and Ty3 integration at the U6 gene are positioned by the TATA box. Proc Natl Acad Sci USA 1993; 90:4927–4931.CrossRefPubMedGoogle Scholar
  86. 86.
    Fruscoloni P, Zamboni M, Panetta G et al. Mutational analysis of the transcription start site of the yeast tRNALeu3 gene. Nucleic Acids Res 1995; 23:2914–2918.CrossRefPubMedGoogle Scholar
  87. 87.
    Johnson JD, Raymond GJ. Three regions of a yeast tRNA3Leu gene promote RNA polymerase III transcription. J Biol Chem 1984; 259:5990–5994.PubMedGoogle Scholar
  88. 88.
    Raymond KC, Raymond GJ, Johnson JD. In vivo modulation of yeast tRNA gene expression by 5′-flanking sequences. EMBO J 1985; 4:2649–2656.PubMedGoogle Scholar
  89. 89.
    Zecherle GN, Whelen S, Hall BD. Purines are required at the 5′ ends of newly initiated RNAs for optimal RNA polymerase III gene expression. Mol Cell Biol 1996; 16:5801–5810.PubMedGoogle Scholar
  90. 90.
    Koski RA, Allison DS, Worthington M et al. An in vitro RNA polymerase III system from S. cerevisiae: effects of deletions and point mutations upon SUP4 gene transcription. Nucleic Acids Res 1982; 10:8127–8143.CrossRefPubMedGoogle Scholar
  91. 91.
    Kassavetis GA, Blanco JA, Johnson TE et al. Formation of open and elongating transcription complexes by RNA polymerase III. J Mol Biol 1992; 226:47–58.CrossRefPubMedGoogle Scholar
  92. 92.
    Gouilloud E, Clarkson SG. A dispersed tyrosine tRNA gene from Xenopus laevis with high transcriptional activity in vitro. J Biol Chem 1986; 261:486–494.PubMedGoogle Scholar
  93. 93.
    Stutz F, Gouilloud E, Clarkson SG. Oocyte and somatic tyrosine tRNA genes in Xenopus laevis. Genes Dev 1989; 3:1190–1198.CrossRefPubMedGoogle Scholar
  94. 94.
    Larson D, Bradford-Wilcox J, Young LS et al. A short 5′ flanking region containing conserved sequences is required for silkworm alanine tRNA gene activity. Proc Natl Acad Sci USA 1983; 80:3416–3420.CrossRefPubMedGoogle Scholar
  95. 95.
    Palida F, Hale C, Sprague KU. Transcription of a silkworm tRNAAlaC gene is directed by two AT-rich upstream sequence elements. Nucleic Acids Res 1993; 21:5875–5881.CrossRefPubMedGoogle Scholar
  96. 96.
    Young LS, Takahashi N, Sprague KU. Upstream sequences confer distinctive transcriptional properties on genes encoding silkgland-specific tRNAAla. Proc Natl Acad Sci USA 1986; 83:374–378.CrossRefPubMedGoogle Scholar
  97. 97.
    Sharma S, Gopinathan KP. Transcriptional silencing of a tRNAGry1 copy from within a multigene family is modulated by distal cis elements. Proc Natl Acad Sci USA 1996; 271:28146–28153.Google Scholar
  98. 98.
    Marschalek R, Dingermann T. Identification of a protein factor binding to the 5′flanking region of a tRNA gene and being involved in modulation of tRNA gene transcription in vivo in Saccharomyces cerevisiae. Nucleic Acids Res 1988; 16:6737–6752.CrossRefPubMedGoogle Scholar
  99. 99.
    DeFranco D, Sharp S, Soll D. Identification of regulatory sequences contained in the 5′-flanking region of Drosophila lysine tRNA2 genes. J Biol Chem 1981; 256:12424–12429.PubMedGoogle Scholar
  100. 100.
    Dingermann T, Burke DJ, Sharp S et al. The 5′ flanking sequences of Drosophila tRNAArg genes control their in vitro transcription in a Drosophila cell extract. J Biol Chem 1982; 257:14738–14744.PubMedGoogle Scholar
  101. 101.
    Schaack J, Sharp S, Dingermann T et al. The extent of a eukaryotic tRNA gene: 5′- and 3′-flanking sequence dependence for transcription and stable complex formation. J Biol Chem 1984; 259:1461–1467.PubMedGoogle Scholar
  102. 102.
    Stewart TS, Soll D, Sharp S. Point mutations in the 5′ ICR and anticodon region of a Drosophila tRNAArg gene decrease in vitro transcription. Nucleic Acids Res 1985; 13:435–447.CrossRefPubMedGoogle Scholar
  103. 103.
    StLouis D, Spiegelman GB. Steady-state kinetic analysis of transcription of cloned tRNAser genes from Drosophila melanogaster. Eur J Biochem 1985; 148:305–313.CrossRefGoogle Scholar
  104. 104.
    Lofquist A, Sharp S. The 5′-flanking sequences of Drosophila melanogaster tRNAAsn5 genes differentially arrest RNA polymerase III. J Biol Chem 1986; 261:14600–14606.PubMedGoogle Scholar
  105. 105.
    Sajjadi F, Spiegelman GB. The modulatory element TNNCT affects transcription of a Drosophila tRNAval4 gene without affecting transcription complex stability. Nucleic Acids Res 1989; 17:755–766.CrossRefPubMedGoogle Scholar
  106. 106.
    Taneja R, Gopalkrishnan R, Gopinathan KP. Regulation of glycine tRNA gene expression in the posterior silk glands of the silkworm Bombyx mori. Proc Natl Acad Sci USA 1992: 89:1070–1074.CrossRefPubMedGoogle Scholar
  107. 107.
    Sharma S, Gopinathan KP. Role of TATATAA element in the regulation of tRNAGly1 gene expression in Bombyx mori is position dependent. J Mol Biol 1996; 262:396–406.CrossRefPubMedGoogle Scholar
  108. 108.
    Carbon P, Krol A. Transcription of the Xenopus laevis selenocysteine tRNA<sup>(S</sup>er)Sec gene: a system that combines an internal B box and upstream elements also found in U6 snRNA genes. EMBO J 1991; 10:599–606.PubMedGoogle Scholar
  109. 109.
    McBryant SJ, Kassavetis GA, Gottesfeld JM. Repression of vertebrate RNA polymerase III transcription by DNA binding proteins located upstream from the transcription start site. J Mol Biol 1995; 250:315–326.CrossRefPubMedGoogle Scholar
  110. 110.
    Arnold GJ, Schmutzler C, Thomann U et al. The human tRNAvaI gene family: organization, nucleotide sequences and homologous transcription of three singlecopy genes. Gene 1986; 44:287–297.CrossRefPubMedGoogle Scholar
  111. 111.
    Morry MJ, Harding JD. Modulation of transcriptional activity and stable complex formation by 5′-flanking regions of mouse tRNAHis genes. Mol Cell Biol 1986; 6:105–115.PubMedGoogle Scholar
  112. 112.
    Arnold GJ, Gross HJ. Unrelated leader sequences can efficiently promote human tRNA gene transcription. Gene 1987; 51:237–246.CrossRefPubMedGoogle Scholar
  113. 113.
    Arnold GJ, Schmutzler C, Gross HJ. Functional dissection of 5′ and 3′ extragenic control regions of human tRNAval genes reveals two different regulatory effects. DNA 1988; 7:87–97.CrossRefPubMedGoogle Scholar
  114. 114.
    Capone JP. Modulation of the phenotypic expression of a human serine tRNA gene by 5′-flanking sequences. DNA 1988; 7:459–468.CrossRefPubMedGoogle Scholar
  115. 115.
    Gonos ES, Goddard JP. The role of the 5′-flanking sequence of a human tRNAGlu gene in modulation of its transcriptional activity in vitro. Biochem J 1990; 272:797–803.PubMedGoogle Scholar
  116. 116.
    Huibregtse JM, Engelke DR. Genomic footprinting of a yeast tRNA gene reveals stable complexes over the 5′-flanking region. Mol Cell Biol 1989; 9:3244–3252.PubMedGoogle Scholar
  117. 117.
    Rooney RJ, Harding JD. Transcriptional activity and factor binding are stimulated by separate and distinct sequences in the 5′ flanking region of a mouse tRNAAsP gene. Nucleic Acids Res 1988; 16:2509–2521.CrossRefPubMedGoogle Scholar
  118. 118.
    Lee BJ, Kang SG, Hatfield D. Transcription of Xenopus selenocysteine tRNAser (Formerly designated opal suppressor phosphoserine tRNA) gene is directed by multiple 5′-extragenic regulatory elements. J Biol Chem 1989; 264:9696–9702.PubMedGoogle Scholar
  119. 119.
    Myslinski E, Schuster C, Krol A et al. Promoter strength and structure dictate module composition in RNA polymerase III transcriptional activator elements. J Mol Biol 1993; 234: 311–318.CrossRefPubMedGoogle Scholar
  120. 120.
    Myslinski E, Schuster C, Huet J et al. Point mutations 5′ to the tRNA selenocysteine TATA box alter RNA polymerase III transcription by affecting the binding of TBP. Nucleic Acids Res 1993; 21: 5852–5858.CrossRefPubMedGoogle Scholar
  121. 121.
    Myslinski E, Krol A, Carbon P. Optimal tRNA(ser)sec gene activity requires an upstream SPH motif. Nucleic Acids Res 1992; 20:203–209.CrossRefPubMedGoogle Scholar
  122. 122.
    Schaub M, Myslinski E, Schuster C et al. Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III. EMBO J 1997; 16:173–181.CrossRefPubMedGoogle Scholar
  123. 123.
    Allison DS, Hall BD. Effects of alterations in the 3′ flanking sequence on in vivo and in vitro expression of the yeast SUP4-o tRNATYr gene. EMBO J 1985; 4:2657–2664.PubMedGoogle Scholar
  124. 124.
    Wang Z, Roeder RG. TFIIIC1 acts through a downstream region to stabilize TFIIIC2 binding to RNA polymerase III promoters. Mol Cell Biol 1996; 16:6841–685o.PubMedGoogle Scholar
  125. 125.
    Gutierrez-Hartmann A, Lieberburg I, Gardner D et al. Transcription of two classes of rat growth hormone gene-associated repetitive DNA: differences in activity and effects of tandem repeat structure. Nucleic Acids Res 1984; 12:7153–7173.CrossRefPubMedGoogle Scholar
  126. 126.
    White RJ, Stott D, Rigby PWJ. Regulation of RNA polymerase III transcription in response to F9 embryonal carcinoma stem cell differentiation. Cell 1989; 59:1081–1092.CrossRefPubMedGoogle Scholar
  127. 127.
    Fowlkes DM, Shenk T. Transcriptional control regions of the adenovirus VA1 RNA gene. Cell 1980; 22:405–413.CrossRefPubMedGoogle Scholar
  128. 128.
    Guilfoyle R, Weinmann R. Control region for adenovirus VARNA transcription. Proc Natl Acad Sci USA 1981; 78:3378–3382.CrossRefPubMedGoogle Scholar
  129. 129.
    Wu G-J, Railey JF, Cannon RE. Defining the functional domains in the control region of the adenovirus type 2 specific VARNA1 gene. J Mol Biol 1987; 194:423–442.CrossRefPubMedGoogle Scholar
  130. 130.
    Rohan RM, Ketner G. A comprehensive collection of point mutations in the internal promoter of the adenoviral VAI gene. J Biol Chem 1987; 262:8500–8507.PubMedGoogle Scholar
  131. 131.
    Railey JF, Wu G-J. Organization of multiple regulatory elements in the control region of the adenovirus type 2-specific VARNA1 gene: fine mapping with linkerscanning mutants. Mol Cell Biol 1988; 8:1147–1159PubMedGoogle Scholar
  132. 132.
    Cannon RE, Wu G-J, Railey JF. Functions of and interactions between the A and B blocks in adenovirus type 2-specific VARNA1 gene. Proc Natl Acad Sci USA 1986; 83:1285–1289.CrossRefPubMedGoogle Scholar
  133. 133.
    Thimmappaya B, Jones N, Shenk T. A mutation which alters initiation of transcription by RNA polymerase III on the Ad5 chromosome. Cell 1979; 18:947–954.CrossRefPubMedGoogle Scholar
  134. 134.
    Vilalta A, Kickhoefer VA, Rome LH et al. The rat vault RNA gene contains a unique RNA polymerase III promoter composed of both external and internal elements that function synergistically. J Biol Chem 1994; 269: 29752–29759.PubMedGoogle Scholar
  135. 135.
    Rosa MD, Gottlieb E, Lerner M et al. Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII. Mol Cell Biol 1981; 1:785–796.PubMedGoogle Scholar
  136. 136.
    Howe JG, Shu M-D. Epstein-Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 1989; 57:825–834.CrossRefPubMedGoogle Scholar
  137. 137.
    Howe JG, Shu M-D. Upstream basal promoter element important for exclusive RNA polymerase III transcription of the EBER 2 gene. Mol Cell Biol 1993; 13:2655–2665.PubMedGoogle Scholar
  138. 138.
    Willis IM. RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem 1993; 212:1–11.CrossRefPubMedGoogle Scholar
  139. 139.
    Ullu E, Weiner AM. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 1985; 318:371–374.CrossRefPubMedGoogle Scholar
  140. 140.
    Liu W-M, Maraia RJ, Rubin CM et al. Alu transcripts: cytoplasmic localization and regulation by DNA methylation. Nucleic Acids Res 1994; 22:1087–1095.CrossRefPubMedGoogle Scholar
  141. 141.
    Liu W-M, Chu W-M, Choudary PV et al. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 1995: 21:1758–1765.CrossRefGoogle Scholar
  142. 142.
    Chu WM, Liu WM, Schmid CW. RNA polymerase III promoter and terminator elements affect Alu RNA expression. Nucleic Acids Res 1995; 23:1750–1757.CrossRefPubMedGoogle Scholar
  143. 143.
    Perez-Stable C, Ayres TM, Shen C-KJ. Distinctive sequence organization and functional programming of an Alu repeat promoter. Proc Natl Acad Sci USA 1984; 81:5291–5295.CrossRefPubMedGoogle Scholar
  144. 144.
    Liu W-M, Schmid CW. Proposed roles for DNA methylation in Alu transcriptional repression and mutational inactivation. Nucleic Acids Res 1993; 21:1351–1359.CrossRefPubMedGoogle Scholar
  145. 145.
    Thorey IS, Clcna G, Reynolds W et al. Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice. Mol Cell Biol 1993; 13:6742–6751.PubMedGoogle Scholar
  146. 146.
    Deininger PL, Batzer MA, Hutchison CA et al. Master genes in mammalian repetitive DNA amplification. Trends Genet 1992; 8:307–311.PubMedGoogle Scholar
  147. 147.
    Matera G, Hellman U, Hintz MF et al. Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res 1990; 18:6019–6023.CrossRefPubMedGoogle Scholar
  148. 148.
    Matera G, Hellman U, Schmid CW. A transpositionally and transcriptionally comnetent Alu subfamily. Mol Cell Biol 1990; 10:5424–5432.PubMedGoogle Scholar
  149. 149.
    Chesnokov I, Schmid CW. Flanking sequences of an Alu source stimulate transcription in vitro by interacting with sequence-specific transcription factors. J Mol Evol 1996; 42:30–36.CrossRefPubMedGoogle Scholar
  150. 150.
    Schmid CW. Human Alu subfamilies and their methylation revealed by blot hybridization. Nucleic Acids Res 1991; 19:5613–5617.CrossRefPubMedGoogle Scholar
  151. 151.
    Englander EW, Wolffe AP, Howard BH. Nucleosome interactions with a human Alu element. J Biol Chem 1993; 268:19565–19573.PubMedGoogle Scholar
  152. 152.
    Kochanek S, Renz D, Doerfler W. DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J 1993; 12:1141–1151.PubMedGoogle Scholar
  153. 153.
    Englander EW, Howard BH. Nucleosome positioning by human Alu elements in chromatin. J Biol Chem 1995; 270:10091–10096.CrossRefPubMedGoogle Scholar
  154. 154.
    Russanova VR, Driscoll CT, Howard BH. Adenovirus type 2 preferentially stimulates polymerase III transcription of Alu elements by relieving repression: a potential role for chromatin. Mol Cell Biol 1995; 15:4282–4290.PubMedGoogle Scholar
  155. 155.
    Brow DA, Guthrie C. Transcription of a yeast U6 snRNA gene requires a polymerase III promoter element in a novel position. Genes Dev 1990; 4:1345–1356.CrossRefPubMedGoogle Scholar
  156. 156.
    Eschenlauer JB, Kaiser MW, Gerlach VL et al. Architecture of a yeast U6 RNA gene promoter. Mol Cell Biol 1993; 13:3015–3026.PubMedGoogle Scholar
  157. 157.
    Burnol A-F, Margottin F, Schultz P et al. Basal promoter and enhancer element of yeast U6 snRNA gene. J Mol Biol 1993; 233:644–658.CrossRefPubMedGoogle Scholar
  158. 158.
    Marsolier M-C, Tanaka S, Livingstone-Zatchej M et al. Reciprocal interferences between nucleosomal organization and transcriptional activity of the yeast SNR6 gene. Genes Dev 1995; 9:410–422.CrossRefPubMedGoogle Scholar
  159. 159.
    Moenne A, Camier S, Anderson G et al. The U6 gene of Saccharomyces cerevisiae is transcribed by RNA polymerase C (III) in vivo and in vitro. EMBO J 1990; 9:271–277.PubMedGoogle Scholar
  160. 160.
    Burnol A-F, Margottin F, Huet J et al. TFIIIC relieves repression of U6 snRNA transcription by chromatin. Nature 1993; 362:475–477.CrossRefPubMedGoogle Scholar
  161. 161.
    Gerlach VL, Whitehall SK, Geiduschek EP et al. TFIIIB placement on a yeast U6 RNA gene in vivo is directed primarily by TFIIIC rather than by sequence-specific DNA contacts. Mol Cell Biol 1995; 15:1455–1466.PubMedGoogle Scholar
  162. 162.
    Kaiser MW, Brow DA. Lethal mutations in a yeast U6 RNA gene B block promoter element identify essential contacts with transcription factor-IIIC. J Biol Chem 1995; 270:11398–11405.CrossRefPubMedGoogle Scholar
  163. 163.
    Roberts S, Colbert T, Hahn S. TFIIIC determines RNA polymerase III specificity at the TATA-containing yeast U6 promoter. Genes Dev 1995; 9:832–842.CrossRefPubMedGoogle Scholar
  164. 164.
    Tani T, Ohshima Y. The gene for the U6 small nuclear RNA in fission yeast has an intron. Nature 1989; 337:87–90.CrossRefPubMedGoogle Scholar
  165. 165.
    Kunkel GR, Maser RL, Calvet JP et al. U6 small nuclear RNA is transcribed by RNA polymerase III. Proc Natl Acad Sci USA 1986; 83:8575–8579.CrossRefPubMedGoogle Scholar
  166. 166.
    Krol A, Carbon P, Ebel J-P et al.Xenopus tropicalis U6 snRNA genes transcribed by pol III contain the upstream promoter elements used by pol II dependent U snRNA genes. Nucleic Acids Res 1987; 15:2463–2478.CrossRefPubMedGoogle Scholar
  167. 167.
    Kunkel GR, Pederson T. Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev 1988; 2:196–204.CrossRefPubMedGoogle Scholar
  168. 168.
    Lescure A, Carbon P, Krol A. The different positioning of the proximal sequence element in the Xenopus RNA polymerase II and III snRNA promoters is a key determinant which confers RNA polymerase III specificity. Nucleic Acids Res 1991; 19:435–441.CrossRefPubMedGoogle Scholar
  169. 169.
    Carbon P, Murgo S, Ebel J-P et al. A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell 1987; 51:71–79.CrossRefPubMedGoogle Scholar
  170. 170.
    Mattaj IW, Dathan NA, Parry HD et al. Changing the RNA polymerase specificity of U snRNA gene promoters. Cell 1988; 55:435–442.CrossRefPubMedGoogle Scholar
  171. 171.
    Lobo SM, Ifill S, Hernandez N. Cis-acting elements required for RNA polymerase II and III transcription in the human U2 and U6 snRNA promoters. Nucleic Acids Res 1990; 18:2891–2899.CrossRefPubMedGoogle Scholar
  172. 172.
    Parry HD, Mattaj IW. Positive and negative functional interactions between promoter elements from different classes of RNA polymerase III-transcribed genes. EMBO J 1990; 9:1097–1104.PubMedGoogle Scholar
  173. 173.
    Lobo SM, Lister J, Sullivan ML et al. The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro. Genes Dev 1991; 5:1477–1489.CrossRefPubMedGoogle Scholar
  174. 174.
    Simmen KA, Bernues J, Parry HD et al. TFIID is required for in vitro transcription of the human U6 gene by RNA polymerase III. EMBO J 1991; 10:1853–1862.PubMedGoogle Scholar
  175. 175.
    Simmen KA, Waldschmidt R, Bernues J et al. Proximal sequence element factor binding and species specificity in vertebrate U6 snRNA promoters. J Mol Biol 1992; 223:873–884.CrossRefPubMedGoogle Scholar
  176. 176.
    Danzeiser DA, Urso O, Kunkel GR. Functional characterization of elements in a human U6 small nuclear RNA gene distal control region. Mol Cell Biol 1993; 13:4670–4678.PubMedGoogle Scholar
  177. 177.
    Parry HD, Tebb G, Mattaj IW. The Xenopus U2 gene PSE is a single, compact element required for transcription initiation and 3′ end formation. Nucleic Acids Res 1989; 17:3633–3644.CrossRefPubMedGoogle Scholar
  178. 178.
    Bark C, Weller P, Zabielski J et al. A distant enhancer element is required for polymerase III transcription of a U6 RNA gene. Nature 1987; 328:356–359.CrossRefPubMedGoogle Scholar
  179. 179.
    Lescure A, Tebb G, Mattaj IW et al. A factor with Spi DNA-binding specificity stimulates Xenopus U6 snRNA in vivo transcription by RNA polymerase III. J Mol Biol 1992; 228:387–394.CrossRefPubMedGoogle Scholar
  180. 180.
    Janson L, Pettersson U. Cooperative interactions between transcription factors SD1 and OTF-1. Proc Natl Acad Sci USA 1990; 87:4732–4736.CrossRefPubMedGoogle Scholar
  181. 181.
    Das G, Henning D, Reddy R. Structure, organization, and transcription of Drosophila U6 small nuclear RNA genes. J Biol Chem 1987; 262:1187–1193.PubMedGoogle Scholar
  182. 182.
    Brow DA, Guthrie C. Spliceosomal RNA U6 is remarkably conserved trom yeast to mammals. Nature 1988; 334:213–218.CrossRefPubMedGoogle Scholar
  183. 183.
    Waibel F, Filipowicz W. U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res 1990; 18:3451–3458.CrossRefPubMedGoogle Scholar
  184. 184.
    Simmen KA, Mattaj IW. Complex requirements for RNA polymerase III transcription of the Xenopus U6 promoter. Nucleic Acids Res 1990; 18:5649–5657CrossRefPubMedGoogle Scholar
  185. 185.
    Goomer RS, Kunkel GR. The transcriptional start site for a human U6 smaii nuclear RNA gene is dictated by a compound promoter element consisting of the PSE and the TATA box. Nucleic Acids Res 1992; 20:4903–4912.CrossRefPubMedGoogle Scholar
  186. 186.
    Reddy R, Henning D, Das G et al. The capped U6 small nuclear RNA is transcribed by RNA polymerase III. J Biol Chem 1987; 262:75–81.PubMedGoogle Scholar
  187. 187.
    Steinberg TI; Mathews DE, Durbin RD et al. Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem 1990; 265:499–505.PubMedGoogle Scholar
  188. 188.
    Waldschmidt R, Wanandi I, Seifart KH. Identification of transcription factors required for the expression of mammalian U6 genes in vitro. EMBO J 1991; 10:2595–2603.PubMedGoogle Scholar
  189. 189.
    Dahlberg JE, Lund E. How does III x II make U6? Science 1991; 254:1462–1463.CrossRefPubMedGoogle Scholar
  190. 190.
    Heard DJ, Kiss T, Filipowicz W. Both Arabidopsis TATA binding protein isoforms are functionally identical in RNA polymerase II and III transcription in plant cells: evidence for gene-specific changes in DNA binding specificity of TBP. EMBO J 1993; 12: 3519–3528.PubMedGoogle Scholar
  191. 191.
    White RJ, Jackson SP, Rigby PWJ. A role for the TATA-box-binding protein cornponent of the transcription factor IID complex as a general RNA polymerase III transcription factor. Proc Natl Acad Sci USA 1992; 89:1949–1953.CrossRefPubMedGoogle Scholar
  192. 192.
    White RJ, Rigby PWJ, Jackson SP. The TATA-binding protein is a general transcription factor for RNA polymerase III. J Cell Science 1992; 16 (Supp): 1–7.CrossRefGoogle Scholar
  193. 193.
    Radebaugh CA, Matthews JL, Geiss GK et al. TATA box-binding protein (TBP) is a constituent of the polymerase I-specific transcription initiation factor TIF-IB (SLi) bound to the rRNA promoter and shows differential sensitivity to TBP-directed reagents in polymerase I, II, and III transcription factors. Mol Cell Biol 1994; 14:597–605.PubMedGoogle Scholar
  194. 194.
    McBryant SJ, Meier E, Leresche A et al. TATA-box DNA binding activity and subunit composition of RNA polymerase III transcription factor IIIB from Xenopus laevis. Mol Cell Biol 1996; 16:4639–4647.PubMedGoogle Scholar
  195. 195.
    Tichelaar JW, Knerer B, Vrabel A et al. Transcription of a variant human U6 small nuclear RNA gene is controlled by a novel, internal RNA polymerase III promoter. Mol Cell Biol 1994; 14:5450–5457.PubMedGoogle Scholar
  196. 196.
    Li J-M, Parsons RA, Marzluff WF. Transcription of the sea urchin U6 gene in vitro requires a TATA-like box, a proximal sequence element, and sea urchin USF, which binds an essential E box. Mol Cell Biol 1994; 14:2191–2200.Google Scholar
  197. 197.
    Li J-M, Haberman RP, Marzluff WF. Common factors direct transcription through the proximal sequence elements (PSEs) of the embryonic sea urchin U1, U2, and U6 genes despite minimal sequence similarity among the PSEs. Mol Cell Biol 1996; 16:1275–1281.PubMedGoogle Scholar
  198. 198.
    Waibel F, Filipowicz W. RNA-polymerase specificity of transcription of Arabidopsis U snRNA genes determined by promoter element spacing. Nature 1990; 346:199–202.CrossRefPubMedGoogle Scholar
  199. 199.
    Kiss T, Marshallsay C, Filipowicz W. Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro. Cell 1991; 65:517–526.CrossRefPubMedGoogle Scholar
  200. 200.
    Vankan P, Filipowicz W. A U-snRNA gene-specific upstream element and a -30 “TATA box” are required for transcription of the U2 snRNA gene of Arabidopsis thaliana. EMBO J 1989; 8:3875–3882.PubMedGoogle Scholar
  201. 201.
    Connelly S, Marshallsay C, Leader D et al. Small nuclear RNA genes transcribed by either RNA polymerase II or RNA polymerase III in monocot plants share three promoter elements and use a strategy to regulate gene expression different from that used by their dicot plant counterparts. Mol Cell Biol 1994; 14: 5910–5919.CrossRefPubMedGoogle Scholar
  202. 202.
    Nakaar V, Dare AO, Hong D et al. Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol 1994; 14: 6736–6742.PubMedGoogle Scholar
  203. 203.
    Fantoni A, Dare AO, Tschudi C. RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements. Mol Cell Biol 1994; 14:2021–2028.PubMedGoogle Scholar
  204. 204.
    Lee JY, Evans CF, Engelke DR. Expression of RNase P RNA in Saccharomyces cerevisiae is controlled by an unusual RNA polymerase III promoter. Proc Natl Acad Sci USA 1991; 88:6986–6990.CrossRefPubMedGoogle Scholar
  205. 205.
    Baer M, Nilsen TW, Costigan C et al. Structure and transcription of a human gene for Hi RNA, the RNA component of human RNase P. Nucleic Acids Res 1990; 18:97–103.CrossRefPubMedGoogle Scholar
  206. 206.
    Topper JN, Clayton DA. Characterization of human MRP/Th RNA and its nuclear gene: full length MRP/Th RNA is an active endoribonuclease when assembled as an RNP. Nucleic Acids Res 1990; 18:793–799.CrossRefPubMedGoogle Scholar
  207. 207.
    Maraia RJ, Sasaki-Tozawa N, Driscoll CT et al. The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Res 1994; 22: 3045–3052.CrossRefPubMedGoogle Scholar
  208. 208.
    Farris AD, Gross JK, Hanas JS et al. Genes for murine Y1 and Y3 Ro RNAs have class 3 RNA polymerase III promoter structures and are unlinked on mouse chromosome 6. Gene 1996; 174:35–42.CrossRefPubMedGoogle Scholar
  209. 209.
    Murphy S, Tripodi M, Melli M. A sequence upstream from the coding region is required for the transcription of the 7SK RNA genes. Nucleic Acids Res 1986; 14:9243–9260.CrossRefPubMedGoogle Scholar
  210. 210.
    Kruger W, Benecke B-J. Structural and functional analysis of a human 7S K RNA gene. J Mol Biol 1987; 195:31–41.CrossRefPubMedGoogle Scholar
  211. 211.
    Murphy S, Pierani A, Scheidereit C et al. Purified octamer binding transcription factors stimulate RNA polymerase III-mediated transcription of the 7SK RNA gene. Cell 1989; 59:1071–1080.CrossRefPubMedGoogle Scholar
  212. 212.
    Murphy S, Yoon JB, Gerster T et al. Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes. Mol Cell Biol 1992; 12:3247–3261.PubMedGoogle Scholar
  213. 213.
    Kleinert H, Assert R, Benecke BJ. A single base pair deletion from the inactive octamer-like motif of the 7S K distal sequence element brings full functionality in vivo. J Biol Chem 1991; 266:23872–23877.PubMedGoogle Scholar
  214. 214.
    Chung J, Sussman DJ, Zeller R et al. The c-myc gene encodes superimposed KNA polymerase II and III promoters. Cell 1987; 51:1001–1008.CrossRefPubMedGoogle Scholar
  215. 215.
    Bentley DL, Brown WL, Groudine M. Accurate, TATA box-dependent polymerase III transcription from promoters of the c-myc gene in injected Xenopus oocytes. Genes Dev 1989; 3:1179–1189.CrossRefGoogle Scholar
  216. 216.
    Huang W, Pruzan R, Flint SJ. In vivo transcription from the adenovirus E2 early promoter by RNA polymerase III. Proc Natl Acad Sci USA 1994; 91:1265–1269.CrossRefPubMedGoogle Scholar
  217. 217.
    Pruzan R, Chatterjee PK, Flint SJ. Specific transcription from the adenovirus E2E promoter by RNA polymerase III requires a subpopulation of TFIID. Nucleic Acids Res 1992; 20:5705–5712.CrossRefPubMedGoogle Scholar
  218. 218.
    Mitchell MT, Hobson GM, Benfield PA. TATA box-mediated polymerase III transcription in vitro. J Biol Chem 1992; 267:1995–2005.PubMedGoogle Scholar
  219. 219.
    Mitchell MT, Benfield PA. TATA box-mediated in vitro transcription by RNA polymerase III. J Biol Chem 1993; 268:1141–1150.PubMedGoogle Scholar
  220. 220.
    Wang Y, Stumph WE. RNA polymerase II/III transcription specificity determined by TATA box orientation. Proc Natl Acad Sci USA 1995; 92:8606–8610.CrossRefPubMedGoogle Scholar
  221. 221.
    Huang W, Wong JM, Bateman E. TATA elements direct bidirectional transcription by RNA polymerases II and III. Nucleic Acids Res 1996; 24:1158–1163.CrossRefPubMedGoogle Scholar
  222. 222.
    Wang Y, Jensen RC, Stumph WE. Role of TATA box sequence and orientation in determining RNA polymerase II/III transcription specificity. Nucleic Acids Res 1996; 24:3100–3106.CrossRefPubMedGoogle Scholar
  223. 223.
    Whitehall SK Kassavetis GA, Geiduschek EP. The symmetry of the yeast U6 RNA gene’s TATA box and the orientation of the TATA-binding protein in yeast TFIIIB. Genes Dev 1995; 9:2974–2985.CrossRefPubMedGoogle Scholar
  224. 224.
    Martinez E, Lagna G, Roeder RG. Overlapping transcription by RNA polymerases II and III of the Xenopus TFIIIA gene in somatic cells. J Biol Chem 1994; 269:25692–25698.PubMedGoogle Scholar
  225. 225.
    Hall RK, Taylor WL. Transcription factor IIIA gene expression in Xenopus oocytes utilizes a transcription factor similar to the major late transcription factor. Mol Cell Biol 1989; 9:5003–5011.PubMedGoogle Scholar
  226. 226.
    Scotto KW, Kaulen H, Roeder RG. Positive and negative regulation of the gene for transcription factor IIIA in Xenopus laevis oocytes. Genes Dev 1989; 3:651–662.CrossRefPubMedGoogle Scholar
  227. 227.
    Pfaff SL, Hall RK, Hart GC et al. Regulation of the Xenopus laevis transcription factor IIIA gene during oogenesis and early embryogenesis: negative elements repress the O-TFIIIA promoter in embryonic cells. Dev Biol 1991; 145:241–254.CrossRefPubMedGoogle Scholar
  228. 228.
    Pfaff SL, Taylor WL. Characterization of a Xenopus oocyte factor that binds to a developmentally regulated cis-element in the TFIIIA gene. Dev Biol 1992; 151:306–316.CrossRefPubMedGoogle Scholar
  229. 229.
    Kim SH, Darby MK, Joho KE et al. The characterization of the TFIIIA synthesized in somatic cells of Xenopus laevis. Genes Dev 1990; 4:1602–1610.CrossRefPubMedGoogle Scholar
  230. 230.
    Kaulen H, Pognonec P, Gregor PD et al. The Xenopus B1 factor is closely related to the mammalian activator USF and is implicated in the developmental regulation of TFIIIA gene expression. Mol Cell Biol 1991; 11:412–424.PubMedGoogle Scholar
  231. 231.
    Hanas JS, Smith JF. Identification of a TFIIIA binding site on the 5′ flanking region of the TFIIIA gene. Nucleic Acids Res 1990; 18:2923–2928.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Robert J. White
    • 1
  1. 1.Institute of Biomedical and Life Sciences Division of Biochemistry and Molecular BiologyUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations