Advertisement

An Integrated Approach to Extra-Urban Crew and Vehicle Scheduling

  • Maddalena Nonato
Chapter
Part of the NATO ASI Series book series (volume 166)

Summary

The scheduling of vehicles and crews, traditionally performed sequentially by scheduling vehicles prior to crews, has to be carried out simultaneously in particular settings such as the extra-urban mass transit, where crews are tightly dependent on vehicle activity or crew deadheadings are highly constrained. In this paper we propose an integrated approach to vehicle and crew scheduling which exploits the network structure of the problem. A heuristic method based on Lagrangean relaxation is presented, which determines a set of pieces of work suitable for both vehicle duties and crew duties. Crew duties are fixed step by step, while vehicles are scheduled once all the trips have been partitioned into pieces.

Extended use of Bundle methods for polyhedral functions and algorithms for constrained shortest path and assignment is made within a dual greedy heuristic procedure for the Set Partitioning problem.

Computational results are provided for Italian mass transit public companies, showing some improvements with respect to the results of the sequential approach.

Keywords

Schedule Problem Column Generation Lagrangean Relaxation Crew Schedule Mass Transit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Balas, M. C. Carrera. A dynamic subgradient based branch and bound procedure for set covering. Operations Research, 44: 875–890, 1996.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. Ball, L. Bodin, R. Dial. A matching based heuristic for scheduling mass transit crews and vehicles. Transportation Science, 17: 4–13, 1983.CrossRefGoogle Scholar
  3. 3.
    M. Ball, H. Benoit-Thompson. A lagrangean relaxation based heuristic for the urban transit crew scheduling problem. J. R. Daduna, A. Wren Eds, Springer Verlag, Berlin Heidelberg, 54–67, 1988.Google Scholar
  4. 4.
    J. E. Beasley. A lagrangean heuristic for set-covering problems. Naval Research Logistics, 37: 151–164, 1990MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    B. Bertossi, P. Carraresi, G. Gallo. On some matching problems arising in vehicle scheduling models. Networks, 17: 271–281, 1987.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. Caprara, M. Fischetti, P. Toth. A heuristic procedure for the set covering problem. Operations Research, (to appear), 1997.Google Scholar
  7. 7.
    G. Carpaneto, M. Dell’Amico, M. Fischetti, P. Toth. A branch and bound algorithm for the multi depot vehicle scheduling problem. Networks, 19: 53 1548, 1989.MathSciNetGoogle Scholar
  8. 8.
    P. Carraresi, G. Gallo. Network models for vehicle and crew scheduling. European Journal of Operational Research, 38: 121–150, 1991.Google Scholar
  9. 9.
    P. Carraresi, A. Frangioni, M. Nonato. Applying bundle methods to the optimization of polyhedral functions. An application-oriented development. Ricerca Operativa, 25: 4–49, 1995.Google Scholar
  10. 10.
    P. Carraresi, L. Girardi, L. Nonato. Network models, lagrangean relaxation and subgradient bundle approach to crew scheduling problems. J. R. Daduna, I. Branco, J. P. Paixão Eds, Springer Verlag, Berlin, Heidelberg, 188–212, 1995.Google Scholar
  11. 11.
    S. Ceria, P. Nobili, A. Sassano. A lagrangean-based heuristic for large scale set covering problems. Report # 406, University of Roma, La Sapienza, Roma, Italy, 1995.Google Scholar
  12. 12.
    J. R. Daduna, A. Wren. Computer aided transit scheduling Lecture notes in Economics and Mathematical Systems 308, Springer Verlag, Berlin, Heidelberg, 1988.CrossRefGoogle Scholar
  13. 13.
    J. R. Daduna, I. Branco, J. P. Paixâo. Computer aided transit scheduling Lecture notes in Economics and Mathematical Systems 430, Springer Verlag, Berlin, Heidelberg, 1995.CrossRefGoogle Scholar
  14. 14.
    J. R. Daduna, J. P. Paixão. Vehicle scheduling for public mass transit: an overview. J. R. Daduna, I. Branco, J. P. Paixão Eds. Springer Verlag, Berlin, Heidelberg, 76–90, 1995.Google Scholar
  15. 15.
    M. Desrochers, E. Soumis. A column generation approach to the urban transit crew-scheduling problem. Transportation Science, 23: 1–13, 1989.CrossRefMATHGoogle Scholar
  16. 16.
    M. Desrochers, E. Soumis. Computer aided transit scheduling Lecture notes in Economics and Mathematical Systems 386, Springer Verlag, Berlin, Heidelberg, 1992.CrossRefGoogle Scholar
  17. 17.
    J. Desrosiers, Y. Dumas, M. M. Solomon, E. Soumis. Time constrained routing and scheduling Les Cahiers du GERAD G-92–42, Ecole des Hautes Etudes Commerciales, Montreal, Canada, 1993.Google Scholar
  18. 18.
    J. C. Faulkner, D. M. Ryan. Express: set partitioning for bus crew scheduling in Christchurch. M. Desrochers, J.-M. Rousseau Eds, Springer Verlag, Berlin, Heidelberg, 358–378, 1992.Google Scholar
  19. 19.
    M. Fisher, P. Kedia. Optimal solution of set covering/partitioning problems using dual heuristics. Management Science, 36: 674–688, 1990.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    M. A. Forbes, J. N. Holt, A. M. Watts. An exact algorithm for multiple depot bus scheduling. European Journal of Operational Research, 72: 115–124, 1994.CrossRefMATHGoogle Scholar
  21. 21.
    R. Freling, J. P. Paixâo. An integrated approach to vehicle and crew scheduling. Proceedings of TRISTAN II, Capri, 319–333, 1994.Google Scholar
  22. 22.
    I. Patrikalakis, D. Xerocostas. A new decomposition scheme for the urban public transport scheduling problem. M. Desrochers J.-M. Rousseau Eds, Springer Verlag, Berlin, Heidelberg, 407–425, 1992.Google Scholar
  23. 23.
    C. Ribeiro, E. Soumis A column generation approach to the multiple depot vehicle scheduling problem. Operations Research, 42: 41–52, 1991.CrossRefGoogle Scholar
  24. 24.
    J.-M. Rousseau. Computer scheduling of public transport 2. North-Holland, Amsterdam, 1985.Google Scholar
  25. 25.
    H. Schramm, J. Zowe. A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM Journal of Optimization, 2: 121–152, 1992.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    D. Scott. A large scale linear programming approach for the public transport scheduling and costing problem. J.-M. Rousseau Ed., North-Holland, Amsterdam, 473–491, 1985.Google Scholar
  27. 27.
    E. Tosini, C. Vercellis. An interactive system for the extra urban vehicle and crew scheduling problems. J. R. Daduna, A. Wren Eds, Springer Verlag, Berlin, Heidelberg, 41–53, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Maddalena Nonato
    • 1
  1. 1.Istituto di Elettronica, Facoltà di IngegneriaUniversità di PerugiaItaly

Personalised recommendations