Skip to main content

The Immunological Basis for the Development of Tumor Cell- and Peptide-Based Vaccines for Treatment of Patients with Renal Cell Carcinoma

  • Conference paper
Cellular Therapy

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 20))

  • 52 Accesses

Abstract

The failure of metastatic renal cell carcinoma (RCC) to respond to irradiation, chemotherapy or hormone therapy has left immunotherapy as the most hopeful form of treatment to date. Systemic cytokine therapy of RCC using recombinant interleukin-2 (rIL-2) alone or in combination with recombinant interferon-α (rIFN-α) has led to objective response rates of 20%–30% (Belldegrun et al. 1991; Rosenberg 1992). Nevertheless, few complete and long-lasting remissions have been achieved and severe toxic side effects limit their broad application. These obstacles have spurred efforts to develop alternative strategies to modulate immune responses of RCC patients. In particular, new approaches are sought for treatment of patients with minimal residual disease. In the forefront are attempts to develop genetically engineered tumor cell vaccines and peptide vaccines that will induce tumor-specific immune responses in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison JP, Hurwitz AA, Leach DR (1995) Manipulation of costimulatory signals to enhance antitumor T-cell responses. Curr Opinion Immunol 7:682–686

    Article  CAS  Google Scholar 

  • Anonymous, (1996) Clinical protocols: cytokine/immunotherapy. Cancer Gene Ther 3:58–68

    Google Scholar 

  • Belldegrun A, Figlin R, Haas G, deKernion J (1991) Immunotherapy for metastic renal-cell carcinoma. World J Urol 9:157–159

    Article  Google Scholar 

  • Bernhard H, Karbach J, Wölfel T, et al. (1994) Cellular immune response to human renal-cell carcinomas: Definition of a common antigen recognized by HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones. Int J Cancer 59:837–842

    Article  PubMed  CAS  Google Scholar 

  • Boon T, Cerottini JC, Van den Eynde B, Van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Ann Rev Immunol 12:337–365

    Article  CAS  Google Scholar 

  • Browning M, Krausa P (1996) Genetic diversity of HLA-A2: Evolutionary and functional significance. Immunol Today 17:165–170

    Article  PubMed  CAS  Google Scholar 

  • Finn OJ (1993) Tumor-rejection antigens recognized by T lymphocytes. Curr Opin Immunol 5:701–708

    Article  PubMed  CAS  Google Scholar 

  • Hersh EM, Akporiaye E, Harris D, et al. (1994) Phase I study of immunotherapy of malignant melanoma by direct gene transfer. Hum Gene Ther 5:1371–1384

    Article  PubMed  CAS  Google Scholar 

  • Jaeger E, Bernhard H, Romero P et al. (1996) Generation of cytotoxic T-cell responses with synthetic melanoma-associated peptides in vivo: implications for tumor vaccines with melanoma-associated antigens. Int J Cancer 66:162–169

    Article  PubMed  CAS  Google Scholar 

  • Jantzer P, Oberneder R, Maget B, Schendel DJ (1995) Recruitment of MHC-restricted cytotoxic T lymphocytes specific for renal cell carcinoma to the tumor in situ. In: Bukowski RM, Finke JH, Klein EA (eds) Biology of renal cell carcinoma. Springer, Berlin, Heidelberg, New York, pp 84–93

    Google Scholar 

  • Jantzer P, Schendel DJ (1997) Immunosurveillance against spontaneously arising human renal cell carcinomas: antigen-driven selection in the T cell receptor repertoire of tumor-infiltrating lymphocytes in vivo. Submitted.

    Google Scholar 

  • Kim TS, Cohen EP (1994) Immunization of mice with allogeneic fibroblasts genetically modified for interleukin-2-secretion and expression of melanoma-associated antigens stimulate predetermined classes of anti-melanoma effector cells. J Immunother 16:24–35

    Article  CAS  Google Scholar 

  • Knuth A, Wölfel T, Meyer zum Büschenfelde KH (1991) Cellular and humoral immune responses against cancer: implications for cancer vaccines. Curr Opin Immunol 3:659–664

    Article  PubMed  CAS  Google Scholar 

  • Mandelboim O, Vadai E, Feldman M, Eisenbach L (1995) Expression of two H-2 K genes, syngeneic and allogeneic, as a strategy for potentiating immune recognition of tumor cells. Gene Therapy 2:757–765

    PubMed  CAS  Google Scholar 

  • Marchand MP, Weynants P, Rankin E, et al. (1995) Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer 63:883–885

    Article  PubMed  CAS  Google Scholar 

  • Nossner E, Schendel DJ (1997) Autologous and allogeneic tumor cell vaccines. In: Blankenstein T, Herrmann F (eds) Gene therapy: principles and applications. Chapman and Hall, Weinheim

    Google Scholar 

  • Oettgen HF (1991) Cytokines in clinical cancer therapy. Curr Opin Immunol 3:699–705

    Article  PubMed  CAS  Google Scholar 

  • Pardoll DM (1993) New strategies for enhancing the immunogenicity of tumors. Curr Opin Immunol 5:719–725

    Article  PubMed  CAS  Google Scholar 

  • Pardoll DM (1995) Paracrine cytokine adjuvants in cancer immunotherapy. Ann Rev Immunol 13:399–115

    Article  CAS  Google Scholar 

  • Parmiani G (1990) An explanation of the variable clinical response to inter-leukin2 and LAK cells. Immunol Today 11:113–115

    Article  PubMed  CAS  Google Scholar 

  • Plautz GE, Yang ZY, Wu BY, et al. (1993) Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc Natl Acad Sci USA 90:4645–4649

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA (1992) Karnofsky Memorial Lecture. The immunotherapy and gene therapy of cancer. J Clin Oncol 10:180–199

    PubMed  CAS  Google Scholar 

  • Schendel DJ, Wank R, Dupont B (1979) Standardization of the human in vitro cell-mediated lympholysis technique. Tissue Antigens 13:112–120

    Article  PubMed  CAS  Google Scholar 

  • Schendel DJ, Gansbacher B, Oberneder R, Kriegmair M, Hofstetter A, Rieth-muller G, Segurado OG (1993) Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes. I. HLA-A2-restricted recognition of autologous and allogeneic tumor lines. J Immunol 151:4209–4220

    PubMed  CAS  Google Scholar 

  • Schendel DJ, Gansbacher B (1993) Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes: Modulation of recognition through retroviral transduction of tumor cells with interleukin 2 complementary DNA and exogenous a interferon treatment. Cancer Res 53:4020–4025

    PubMed  CAS  Google Scholar 

  • Schendel DJ, Oberneder R, Falk CS, Jantzer P, Kressenstein S, Maget B, Hofstetter A, Riethmiiller G, Nößner E (1997) Cellular and molecular analyses of major histocompatability complex (MHC)-restricted and non-MHC-restricted effector cells recognizing renal cell carcinomas: problems and perspectives for immunotherapy. J Mol Med (in press)

    Google Scholar 

  • Schwartz RH(1992) Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71:1065–1068

    Article  PubMed  CAS  Google Scholar 

  • Slingluff CL, Jr., Hunt DF, Engelhard VH (1994) Direct analysis of tumor-associated peptide antigens. Curt Opin Immunol 6:733–740

    Article  CAS  Google Scholar 

  • Tahara H, Zeh HJ, Storkus WJ, et al. (1994) Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res 54:182–189

    PubMed  CAS  Google Scholar 

  • Van Pel A, Van der Bruggen P, Coulie PG, et al. (1995) Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev 145:229–250

    Article  PubMed  Google Scholar 

  • Veelken H, Jesuiter H, Mackensen A, et al. (1994) Primary fibroblasts from human adults as target cells for ex vivo transfection and gene therapy. Hum Gene Ther 5:1203–1210

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

H. Wekerle H. Graf J. D. Turner

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schendel, D.J., Nößner, E., Maget, B., Kressenstein, S., Pantel, K., Oberneder, R. (1997). The Immunological Basis for the Development of Tumor Cell- and Peptide-Based Vaccines for Treatment of Patients with Renal Cell Carcinoma. In: Wekerle, H., Graf, H., Turner, J.D. (eds) Cellular Therapy. Ernst Schering Research Foundation Workshop, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03509-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03509-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03511-5

  • Online ISBN: 978-3-662-03509-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics