Endothelial Cells, Estrogen and Angiogenesis

  • H. W. Schnaper
  • K. A. McGowan
  • S. C. Hubchak
  • M. C. Cid
  • H. K. Kleinman
  • S. Kim-Schulze
Conference paper
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 21)


Increasing clinical evidence supports a role for estrogen in modulating vascular cell function. Premenopausal women enjoy relative protection from heart attacks and strokes compared with men. After menopause, the incidence of atherosclerotic cardiovascular disease rapidly approximates that of men (Stampfer et al. 1990). Moreover, several studies have indicated that postmenopausal estrogen replacement therapy may decrease the incidence of subsequent cardiovascular events in women (Grady et al. 1992; Psaty et al. 1994; Folsom et al. 1995; Writing Group for the PEPI Trial 1995). A role for estrogen in vascular biology is further suggested by the observation that women have higher rates of certain inflammatory diseases than do men, including several diseases that are associated with local angiogenesis (Beeson 1994). Third, spider angiomas are common occurrences in pregnant women or in men with chronic liver disease. After pregnancy ends, or when the cause of the high-estrogen status of the men with hepatic dysfunction is addressed, the angiomas usually resolve (Pirovino et al. 1988). Together, these findings support the concept that estrogen has clinically significant effects on endothelial cell activity related to both atherosclerosis and angiogenesis.


Estrogen Receptor Human Umbilical Vein Endothelial Cell Endothelial Cell Activity Estrogen Response Element Endothelial Cell Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beeson PB (1994) Age and sex associations of 40 autoimmune diseases. J Am Med Assoc 96: 457–462Google Scholar
  2. Cid MC, Kleinman HK, Grant DS, Schnaper HW, Fauci AS, Hoffman GS (1994a) Estradiol enhances leukocyte binding to tumor necrosis factor ( TNF)-stimulated endothelial cells via an increase in TNF-induced adhesion molecules E-selectin, intercellular adhesion molecule typel and vascular cell adhesion molecule typel. J Clin Invest 93: 17–25Google Scholar
  3. Cid MC, Esparza J, Grant DG, Morales DE, McGowan KA, Urbano-Marquez A, Schnaper HW, Kleinman HK (1994b) Estradiol increases endothelial cell attachment to extracellular matrix proteins through an increase in integrin expression. Clin Res 42: 131AGoogle Scholar
  4. Folkman J (1985) Toward an understanding of angiogenesis: search and discovery. Perspect Biol Med 29: 10–36PubMedGoogle Scholar
  5. Folsom AR, Mink PJ, Sellers TA, Hong C-P, Zheng W, Potter JD (1995) Hormonal replacement therapy and morbidity and mortality in a prospective study of postmenopausal women. Am J Publ Health 85: 1128–1132CrossRefGoogle Scholar
  6. Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon III RO (1994) Acute vascular effects of estrogen in postmenopausal women. Circulation 90: 786–791PubMedCrossRefGoogle Scholar
  7. Grady D, Rubin SM, Petitti DB, Fox CS, Black D, Ettinger B, Ernster VL, Cummings SR (1992) Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med 117: 1016–1037PubMedGoogle Scholar
  8. Johns A, Freay AD, Fraser W, Korach KS, Rubanyi GM (1996) Disruption of estrogen receptor gene prevents 1713 estradiol-induced angiogenesis in transgenic mice. Endocrinology 137: 4511–4513PubMedCrossRefGoogle Scholar
  9. Karas RH, Patterson BL, Mendelsohn ME (1994) Human vascular smooth muscle cells contain functional estrogen receptor. Circulation 89: 1943–1950PubMedCrossRefGoogle Scholar
  10. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige D, Gotoh Y, Nishida E, Kawashima H et al (1995) Activation of the estrogen receptor through phosphorylation by mitogen activated protein kinase. Science 270: 1491–1494PubMedCrossRefGoogle Scholar
  11. Kim-Schulze S, McGowan KA, Hubchak SC, Cid MC, Martin MB, Kleinman HK, Greene GL, Schnaper HW (1996) Expression of an estrogen receptorGoogle Scholar
  12. by human coronary artery and umbilical vein endothelial cells. Circulation 94:1402–1407Google Scholar
  13. Losordo DW, Kearney M, Kim EA, Jekanowski J, Isner JM (1994) Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation 89: 1501–1510PubMedCrossRefGoogle Scholar
  14. Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, Cid MC, Kleinman HK, Schnaper HW (1995) Estrogens promote angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 91: 755–763PubMedCrossRefGoogle Scholar
  15. Nichols NR, Olsson CA, Funder JW (1983) Steroid effects on protein synthesis in cultured smooth muscle cells from rat aorta. Endocrinology 113: 1096–1101PubMedCrossRefGoogle Scholar
  16. Pirovino M, Linder R, Boss CH (1988) Cutaneous spider nevi in liver cirrhosis: capillary microscopical and hormonal investigation. Klin Wochenschr 66: 298–302PubMedCrossRefGoogle Scholar
  17. Psaty BM, Heckbert SR, Atkins D, Lemaitre R, Koepsell TD, Wahl PW, Siscovick DA, Wagner EH (1994) The risk of myocardial infarction associated with the combined use of estrogens and progestins in postmenopausal women. Arch Intern Med 154: 1333–1339PubMedCrossRefGoogle Scholar
  18. Raines EW, Ross R (1991) Mechanisms of plaque formation. Cellular changes and the possible role of growth-regulatory molecules. Atheroscler Rev 23: 143–152Google Scholar
  19. Schnaper HW, Grant DS, Stetler-Stevenson WG, Fridman R, D’Orazi G, Murphy A, Bird RE, Hoyhtya M, Fuerst TR, Quigley Jet al (1993) Type IV collagenases and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 156: 235–246PubMedCrossRefGoogle Scholar
  20. Schnaper HW, Barnathan ES, Mazar A, Maheshwari S, Ellis S, Cortez SL, Bancos WH, Kleinman HK (1995) Plasminogen activators augment endothelial cell organization in vitro by two distinct pathways. J Cell Physiol 165: 107–118PubMedCrossRefGoogle Scholar
  21. Stampfer MJ, Colditz GA, Willett WC (1990) Menopause and heart disease: a review. Ann NY Acad Sci 592: 193–203PubMedCrossRefGoogle Scholar
  22. Thompson EW, Katz D, Shima TB, Wakeling AE, Lippman ME, Dickson RB (1989) ICI 164,384, a pure antagonist of estrogen-stimulated MCF-7 cell proliferation and invasiveness. Cancer Res 49: 6929–6934PubMedGoogle Scholar
  23. Thompson EW, Reich R, Shima TB, Albini A, Graf J, Martin GR, Dickson RB, Lippman ME (1988) Differential regulation of growth and invasiveness of MCF-7 breast cancer cells by antiestrogens. Cancer Res 48: 6764–6768PubMedGoogle Scholar
  24. Vargas R, Wroblewska B, Rego A, Hatch J, Ramwell PW (1993) Oestradiol inhibits smooth muscle cell proliferation of pig coronary arteries. Br J Pharmcaol 109: 612–617CrossRefGoogle Scholar
  25. Weiner CP, Lizasoain I, Baylis SA, Knowles RG, Charles IG, Moncada S (1994) Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci USA 91: 5212–5216PubMedCrossRefGoogle Scholar
  26. Writing Group for the PEPI Trial (1995) Effects of estrogen or estrogen/progestin on heart disease risk factors in postmenopausal women. The postmenopausal estrogen/progestin interventions (PEPI) trial. J Am Med Assoc 273: 199–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • H. W. Schnaper
  • K. A. McGowan
  • S. C. Hubchak
  • M. C. Cid
  • H. K. Kleinman
  • S. Kim-Schulze

There are no affiliations available

Personalised recommendations