Global Sea Level Analysis Based on ERS-1 Altimeter Data

  • M. Anzenhofer
  • Th. Gruber
  • M. Rentsch
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 117)

Abstract

Global mean sea level observations are necessary to answer the urgent questions about climate changes and their impact on socioeconomy. At GFZ/D-PAF, ERS altimeter data is used to systematically generate geophysical products like sea surface topography, high resolution geoid, short-period and stationary sea surface height models. Based on that experience fully reprocessed ERS-1 altimeter data is used to perform a time series of monthly sea surface height models from April 1992 to April 1995. The reprocessing consists of improved satellite ephemerides, merging of Grenoble tidal model and application of range corrections due to timing errors. The three years time series is taken to estimate the rate of change of global mean sea level. This includes a careful treatment of seasonal effects by a common masking procedure. The obtained rate of change is compared to external results from tide gauges. The relatively short period of three years, however, does not allow definite conclusions with respect to possible secular climate changes.

Keywords

Microwave Radar Geophysics Doyle Moline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan T.D., Satellite microwave remote sensing, Ellis Horwood Series in Marine Science, 1983Google Scholar
  2. Anzenhofer M., W. Bosch, Th. Gruber, T. Spticker, D-PAF quick-look sea surface monitoring with ERS-1 fast delivery altimeter data, International Association of Geodesy Symposia, Geodesy and Physics of the Earth, Vol. 112, Berlin, 87–91, 1992Google Scholar
  3. Anzenhofer M., Th. Gruber, MSS93A: A new stationary sea surface combining one year upgraded ERS-1 fast delivery data and 1987 GEOSAT altimeter data, Bulletin Géodésique, 69, 157–163, 1995CrossRefGoogle Scholar
  4. Anzenhofer M., Th. Gruber, M. Rentsch, Global high resolution mean sea surface based on ERS-1 35- and 168- day cycles and TOPEX data, International Association of Geodesy Symposia, 116, Global Gravity Field and Its Temporal Variations, Springer, 1996aGoogle Scholar
  5. Anzenhofer M., Th. Gruber, Fully Reprocessed ERS-1 Altimeter Data From 1992 to 1995: Detection of Sea Level Changes, Submitted to JGR-Ocean Special Section on Advances in Oceanography and Sea Ice Research using ERS Observations, 1996bGoogle Scholar
  6. Anzenhofer M., Rajasenan C., Gruber Th., Massmann F.-H., ERS-2 RA Calibration Using OPR2, Final Technical Report, GFZ, Potsdam, 1996cGoogle Scholar
  7. Benveniste J., Minutes of the ERS-2 radar altimeter and microwave radiometer commissioning working group (#9), ESA-ESRIN, 30–31 January 1996, rs/pmljb/96.009, ESRIN, Frascati, 1996Google Scholar
  8. Bilitza D., International reference ionosphere 1995, personal communication, 1996Google Scholar
  9. Bonavito N.L., R.A. Gordon, J.G. Marsh, On the nature of the radial and cross track errors for artificial earth satellites, Goddard Space Flight Center, Greenbelt, Maryland, 1975Google Scholar
  10. Bosch W., M. Anzenhofer, T. Spöcker, Sea surface height modeling, generation and validation of sample products, International Association of Geodesy Symposia, From Mars to Greenland: Charting Gravity with Space and Airborne Instruments, Springer, 1992Google Scholar
  11. Broecker W.S., Plötzliche Klimawechsel, Spektrum der Wissenschaft, Januar 1996, 86–92, 1996Google Scholar
  12. CERSAT, Altimeter & microwave radiometer ERS products - User manual, Version 1. 2, 20. 7. 1995Google Scholar
  13. Cheney R.E., N.S. Doyle, B.C. Douglas, R.W. Agreen, L. Miller, E.L. Timmerman, D.C. McAdoo, The complete Geosat altimeter GDR handbook, NOM Manual NOS NGS 7, National Ocean Service, Rockville, MD., 1991Google Scholar
  14. Church J.A., J.S. Godfrey, D.R. Jackett, T.J. McDougall, A model of sea level rise caused by ocean thermal expansion, J. Clim., 4 (4), 438–456, 1991CrossRefGoogle Scholar
  15. Eanes R.J., personnel communicationGoogle Scholar
  16. Fu L.L., R.E. Cheney, Application of satellite altimetry to ocean circulation studies: 1987–1994, U.S. National Report to IUGG, 1991–1994, Rev. Geophys. Vol. 33 Suppi., AGU, 1995Google Scholar
  17. Gruber Th., F.-H. Massmann, Ch. Reigber, ERS-1 D-PAF global products manual, GeoForschungsZentrum Potsdam, 1993aGoogle Scholar
  18. Gruber Th., M. Anzenhofer, M. Rentsch, Quick-look ocean products generation at D-PAF, in: Proceedings of the Second ERS-1 Symposium: Space at the Service of Our Environment, ed. B. Kaldeich, ESA Publication Division, SP-361 Volume 2, 1191–1196, 1993bGoogle Scholar
  19. Horai K., Adjustment, interpolation and smoothing of GEOS-3 altimeter data, J. Geophys. Res., Vol. 87, 8693–8707, 1982CrossRefGoogle Scholar
  20. Houghton R.A., G.M. Woodwell, Global climatic change, Scientific American, Vol. 260, 4, 18–26, 1989Google Scholar
  21. Le Provost C., F. Lyard, J.M. Molines, Improving ocean tide prediction by increasing the number of semi-diurnal constituents, submitted to Geophys. Res. Letters, 1990Google Scholar
  22. Le Provost, C., F. Lyard, J.M. Molines, M.L. Genco, F. Rabilloud, A hydrodynamic ocean tide model improved by assimilating a satellite altimeter derived data set. submitted to J. Geophys. Res., 1996Google Scholar
  23. Llewellyn S.K., R.B. Bent, Documentation and description of the Bent ionospheric model, AFCRL-TR-73–0657, 1973Google Scholar
  24. Marsh J.G., R.G. Williamson, SEASAT altimeter timing bias estimation, J. Geophys. Res., Vol. 87, C5, 3232–3238, 1982Google Scholar
  25. Meier M.F., The contribution of small glaciers to global sea level rise, Science, 226, 1418–1421, 1984CrossRefGoogle Scholar
  26. Nerem R.S., Measuring global mean sea level variations using TOPEX/POSEIDON altimeter data, J. Geophys. Res., Vol. 100, C12, 25135–25151, 1995Google Scholar
  27. New York Times, Error inflated estimate of rising sea levels, researchers report, Tuesday, July 30, 1996Google Scholar
  28. Pugh D.T., The global sea-level observing system, Hydrographic J., No. 45, 5–8, 1987Google Scholar
  29. Schwintzer P., Ch. Reigber, A. Bode, Z. Chen, F.-H. Massmann, J.C. Raimondo, J.M. Lemoine, G. Balmino, R. Biancale, B. Moynot, J.C. Marty, F. Barlier, Y. Boudon, Improvement of GRIM4 earth gravity models using Geosat altimeter and Spot-2 and ERS-1 tracking data, in: Proceedings of IAG Symposium No. 112 Geodesy and Physics of the Earth, ed. H. Montag, Ch. Reigber, Springer Verlag, 1993Google Scholar
  30. Schwintzer P., Ch. Reigber, A. Bode, Z. Kang, S.Y. Zhu, F.-H. Massmann, J C Raimondo, R. Biancale, G. Balmino, J.M. Lemoine, B. Moynot, J.C. Marty, F. Barlier, Y. Boudon, Long-wavelength global gravity field models: GRIM4–S4, GRIM4–C4, J. of Geodesy, in print, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • M. Anzenhofer
    • 1
  • Th. Gruber
    • 1
  • M. Rentsch
    • 1
  1. 1.Division 1 D-PAFGeoForschungsZentrum Potsdam (GFZ)OberpfaffenhofenGermany

Personalised recommendations