Skip to main content

Geoid, Cauchy’s Problem and Displacement

  • Conference paper
Gravity, Geoid and Marine Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 117))

  • 433 Accesses

Abstract

The classical definition of the geoid is exposed first. Then its tie to the Cauchy problem with initial conditions on a spacelike surface is discussed. In this connection an example shows a process indicating a maximum mass concentration which generates an approximation of the external gravity potential. Finally, the D’Alembert and Euler’s spatial equation for density is expressed within Truesdell’s concepts and related to the temporal deformation of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bers, L., John, F. and Schechter, M. (1964). Partial differential equations. John Wiley and Sons, Inc., New York—London—Sydney.

    Google Scholar 

  • Brovelli, M.A. and Sansò, F. (1993). Is the determination of the geoid a reasonable problem? Bull. No. 2, Int. Geoid Service. D.I.I.A.R. — Politecnico di Milano, pp. 53 —65.

    Google Scholar 

  • Burša, M. (1974). Gravity anomalies, geoid heights and deflections of the vertical from satellite observations. Report No. 8 of the Res. Inst. of Geod., Topog. and Cartog., Series 3, Prague, 1974, pp. 33–48 (in Czech).

    Google Scholar 

  • Courant, R. (1964). Partial differential equations. Mir Publishers, Moscow (in Russian).

    Google Scholar 

  • Engels, J., Grafarend, E., Keller, W., Martinec, Z., Sansò, F. and Vaní(ek, P. (1993). The geoid as an inverse problem to be regularized. Anger, G., Gorenflo, R., Jochmann, H., Moritz, H. and Webers, W. (eds.): Inverse problems: Principles and applications in geophysics, technology and medicine. Akad. Vlg., Berlin, pp. 122 —166.

    Google Scholar 

  • Gaposchkin, E.M. and Lambeck, K. (1970). 1969 Smithsonian Standard Earth (II). SAO Spec. Report. 315.

    Google Scholar 

  • Grafarend, E.W. (1989). The geoid and the gravimetric boundary value problem. Report No. 18, Dept. of Geod., The Royal Inst. of Technology, Stockholm.

    Google Scholar 

  • Grafarend, E.W. (1993). Gauge theory, field equations of gravitations, the definition and computation of the spacetime deforming geoid. Montag, H. and Reigber, Ch. (eds.). Geodesy and Physics of the Earth. Int. Assoc. of Geodesy Symposia No. 112, SpringerVlg., Berlin etc., pp. 226–232.

    Google Scholar 

  • Grafarend, E.W. (1994). What is a geoid? Vanícek, P. and Christou, N.T. (eds.): Geoid and its geophysical interpretation. CRC Press, Inc., Boca Raton etc.

    Google Scholar 

  • Grafarend, E.W., Engels, J. and Varga, P. (1996). Temporal variation of the terrestrial gravity field due to internal/external volume and surface forces: Functional relations between generalized Love-Shida Functions. Rapp, R.H., Cazenave, A.A. and Nerem, R.S. (eds.). Global gravity field and its temporal variations. Int. Assoc. of Geodesy Symposia No. 116, Springer-Vlg., Berlin etc., pp. 174–175.

    Google Scholar 

  • Heck, B. (1992). Some remarks on the determination of the geoid in the framework of the internal geodetic boundary value problem. Holota, P. and Vermeer, M. (eds.). Proc. First continental workshop on the geoid in Europe, Prague, 1992. Res. Inst. of Geod., Topog. and Cartog., Prague in co-operation with IAG–Subcommis. for the Geoid in Europe, Prague, pp. 458–471.

    Google Scholar 

  • Holota, P. (1979). Representation of the Earth’s gravity field by the potential of point masses. Obs. of Artif. Sat. of the Earth, No. 18, Warszawa-Lodz, pp. 159–169.

    Google Scholar 

  • Holota, P. (1988). On the theory of the geoid determination in continental areas. Proc. 6th Int. Symp. Geod. and Phys. of the Earth, Potsdam, 1988. Veröff. d. Zentralinst. f. Phys. d. Erde., Nr. 102, Potsdam, 1989, pp. 218–228.

    Google Scholar 

  • Holota, P. (1995). Two branches of the Newton potential and geoid. Siinkel, H. and Marson, I. (eds.). Gravity and Geoid. Int. Assoc. of Geodesy Symposia No. 113, Springer-Vlg., Berlin etc., pp. 205–214.

    Google Scholar 

  • Hörmander, L. (1975). The boundary problems of physical geodesy. The Royal Inst. of Technology, Division of Geodesy, Stockhlom; also: Archive for Rational Mechanics and Analysis 62 (1976), pp. 1–52.

    Google Scholar 

  • Kellogg, O.D. (1953). Foundations of potential theory. Dover Publications, Inc., New-York.

    Google Scholar 

  • Listing, J.B. (1873). Über unsere jetzige Kenntnis der Gestalt und Grösse der Erde. Nachrichten von d. Kgl. Ges. d. Wiss. u. d. G.A. Universität zu Göttingen. Vlg. d. Dieterichschen Buchhandlung, Göttingen.

    Google Scholar 

  • Lundquis, C.A. and Giacaglia, C.E.O. (1972). Geopotential representation with sampling functions. Henriksen, S.W., Mancini, A. and Chovitz, B.H. (eds.). The use of artificial satellites for geodesy. Geophys. Monog. 15, Am. Geophys. Union, Washington, D.C.

    Google Scholar 

  • Moritz, H. (1990). The figure of the Earth- Theoretical geodesy and the Earth’s interior. H. Wichmann Vlg., Karlsruhe.

    Google Scholar 

  • Oden, J.T. (1973). Finite element applications in mathematical physics. Whiteman, J.R. (ed.). The mathematics of finite elements and applications. Academic Press, London and New York, pp. 239–282.

    Google Scholar 

  • Sansò, F. and Dermanis, A. (1982). A geodynamic boundary value problem. Anno XLIBoll. di Geod. e Sci. Affini-N. 1, pp. 65–88.

    Google Scholar 

  • Schulze, B.W. (1977). Interpretation of an inverse problem of geophysics by the potential theory. Gerl. Beitr. Geophys. 86, pp. 291–302.

    Google Scholar 

  • Schulze, B.W. and Wildenhain, G. (1977). Metoden der Potentialtheorie far elliptische Differentialgleichungen beliebiger Ordnung. Akademie-Verlag, Berlin.

    Google Scholar 

  • Truesdell, C. (1966). The elements of continuum mechanics. Springer Vlg., New York etc.

    Google Scholar 

  • Vanícek, P. and Christou, N.T. (eds., 1994 ). Geoid and its geophysical interpretations. CRC Press, Inc., Boca Raton etc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holota, P. (1997). Geoid, Cauchy’s Problem and Displacement. In: Segawa, J., Fujimoto, H., Okubo, S. (eds) Gravity, Geoid and Marine Geodesy. International Association of Geodesy Symposia, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03482-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03482-8_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08328-0

  • Online ISBN: 978-3-662-03482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics