Overexpression of Proteins with Seven Transmembrane Spanning Segments

  • Volker Hildebrandt
  • Dieter Oesterhelt
Chapter
Part of the Biotechnology Intelligence Unit book series (BIOIU)

Abstract

Polytopic cell surface proteins with seven transmembrane spanning segments (7TMS) form a large and functionally diverse superfamily.1 Up to now more than 400 genes of this superfamily have been cloned and the total number is expected to exceed 2000. For many members of this superfamily, it has been shown that the Nterminus is on the extracellular side of the membrane and the Cterminus is on the intracellular side. The proposed secondary structure is exemplified for bacteriorhodopsin (BR) in Figure 5.1. The transmembrane segments are believed to be α-helices (23–26 amino acids long), which are oriented roughly perpendicular to the membrane. BR is a light-driven proton pump of the Archeon Halobacterium salinarium.2,3 It is currently the only protein of the 7TMS superfamily whose structure has been elucidated at 3–5 Å resolution in the direction parallel and about 10 Å perpendicular to the membrane plane.4 This makes BR a topographic model for other proteins with 7TMS, even for those of Eukarya.5–9 The resolution of bovine rhodopsin is about 9 Å parallel and approximately 47 Å perpendicular to the plane of the membrane.10,11 The primary sequence information on potential members of the superfamily is rapidly increasing and as a consequence, the suspected sequence identity between

Keywords

Codon Dopamine Recombination Respiration Histamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gundermann T, Nürnberg B, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. J MolGoogle Scholar
  2. 2.
    Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature (New Biol) 1971; 233: 2853–2857.Google Scholar
  3. 3.
    Heberle J, Riesle J, Thiedemann G et al. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 1994; 370:379-382.Google Scholar
  4. 4.
    Henderson R, Baldwin JM, Ceska TA et al. Model for the structure of bacterio-rhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 1990; 213: 899–929.PubMedCrossRefGoogle Scholar
  5. 5.
    Khorana HG. Adventures in light-transducing systems: Bacterial rhodopsins and mammalian rhodopsin. In: Sarma RH, Sarma MH, eds. Structural biology: the state of the art. Proc Eighth Convers. New York: RG Adenine Press, 19931-17.Google Scholar
  6. 6.
    Strader CD, Fong TM, Graziano MP et al. The family of G protein coupled receptors. FASEB J 1995; 9: 745–754.Google Scholar
  7. 7.
    Zhang D, Weinstein H. Polarity conserved positions in transmembrane domains of G protein coupled receptors and bacteriorhodopsin. FEBS Lett 1994; 337: 207–212.Google Scholar
  8. 8.
    Röper D, Krüger P, Grötzinger J et al. Models of G protein coupled receptors revised for a family-wide compliance with experimental data. A new sequence accommodation suggested for helix G. Receptors Channels 1995; 3: 97–106.PubMedGoogle Scholar
  9. 9.
    Hoflack J, Trumpp-Kallmeyer S, Hibert M. Re-evaluation of bacteriorhodopsin as a model for G protein coupled receptors. TiPS 1994; 15: 7–9.Google Scholar
  10. 10.
    Schertler GFX, Villa C, Henderson R. Projection structure of rhodopsin. Nature 1993; 362: 770–772.Google Scholar
  11. 11.
    Unger VM, Schertler GFX. Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys J 1995; 68: 1776–1786.PubMedCrossRefGoogle Scholar
  12. 12.
    Baldwin JM. The probable arrangement of the helices in the G protein-coupled receptors. EMBO J 1993; 12: 1693–1703.Google Scholar
  13. 13.
    Baldwin JM. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 1994; 6: 180–190.Google Scholar
  14. 14.
    Oesterhelt D, Tittor J, Bamberg E. A unifying concept for ion translocation by retinal proteins. J Bioener Biomem 1992; 24: 181–191.CrossRefGoogle Scholar
  15. 15.
    Seidel R, Scharf B, Gautel M et al. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc Natl Acad Sci USA 1995; 923036-3040.Google Scholar
  16. 16.
    Gärtner W, Towner P. Invertebrate visual pigments. Photochem Photobiol 1995; 62: 1–16.Google Scholar
  17. 17.
    Oprian DD. The ligand-binding domain of rhodopsin and other G protein-linked receptors. J Bioener Biomem 1992; 24: 211–217.CrossRefGoogle Scholar
  18. 18.
    Parini A, Moudanos CG, Pizzinat N et al. The elusive family of imidazoline binding sites. TiPS 1996; 17: 13–16.PubMedGoogle Scholar
  19. 19.
    Reppert SM, Weaver DR. Melatonin Madness. Cell 1995; 83: 1059–1062.Google Scholar
  20. 20.
    Yarfitz S, Hurley JB. Transduction mechanisms of the vertebrate and invertebrate photoreceptors. J Biol Chem 269; 20: 14329–14332.Google Scholar
  21. 21.
    Zucker CS. The biology of vision in Drosophila. Proc Natl Acad Sci USA 1996; 93: 571–575.Google Scholar
  22. 22.
    Stryer L. Vision: from photon to perception. Proc Natl Acad Sci USA 1996; 93557-559.Google Scholar
  23. 23.
    Amis S, Hofmann KP. Two different forms of metarhodopsin II: schiff base deprotonation precedes proton uptake and signaling state. Proc Natl Acad Sci USA 1993; 90:7849-7853.Google Scholar
  24. 24.
    Wallin E, Heijne G. Properties of N-terminal tails in G protein coupled receptors: a statistical study. Prot Engineering 1995; 8: 693–698.Google Scholar
  25. 25.
    Coughlin SR. Expanding horizons for receptors coupled to G proteins: diversity and diseases. Curr Biol 1994; 6: 191–197.Google Scholar
  26. 26.
    Lambright DG, Noel JP, Hamm HE et al. The 1.8 A crystal structure of transducin a GDP: Structural determinants for the activation of the a subunit of a hetero-trimeric G protein. Nature 1994; 369: 621–628.PubMedCrossRefGoogle Scholar
  27. 27.
    Clapham DE. The G protein nanomachine. Nature 1996; 379: 297–299.Google Scholar
  28. 28.
    Lambright DG, Sondek J, Bohm A et al. The 2.0 A crystal structure of a heterotrimeric G protein. Nature 1996; 379311-319.Google Scholar
  29. 29.
    Lutz J, Weyher E, Moroder L. Metal ion binding affinities of gastrin and CCK in membrane mimetic environment. J Peptide Sci 1995; 1: 36o - 37o.Google Scholar
  30. 30.
    Nelson MA. Mating systems in ascomycetes: a romp in the sac. TIG 1996; 12: 69–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Hughes DA, Yamamoto M. Ras and signal transduction during sexual differentiation in the fission yeast Schizosaccharomyces pombe. In: Kurjan J, Taylor BL, eds. Signal transduction. London: Academic Press Inc, 1993: 123–146.CrossRefGoogle Scholar
  32. 32.
    Kitamura K, Shimoda C. The Schizosaccharomyces pombe mama gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisae Ste2 protein. EMBO J 1991; 10:3743-3751.Google Scholar
  33. 33.
    Tanaka K, Davey J, Imai Y et al. Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol Cell Biol 1993; 13: 80–88.PubMedGoogle Scholar
  34. 34.
    Eriksson 0E, Svedskog A, Landvik S. Molecular evidence for the evolutionary hiatus between Saccharomyces cerevisiae and Schizo-saccharomyces pombe. Systema Ascomycetum 1993; 11: 179–187.Google Scholar
  35. 35.
    Huysmans E, Dams E, Vandenberghe A et al. The nucleotide sequences of the 5S rRNAs of four mushrooms and their use in studying the phylogenetic position of basidiomycetes among the eukaryotes. Nucl Acids Res 1983; 11: 2871–2880.PubMedCrossRefGoogle Scholar
  36. 36.
    Labib K, Moreno S. Rum: a CDK inhibitor regulating Gi progression in fission yeast. T Cell Biol 1996; 6: 62–66.CrossRefGoogle Scholar
  37. 37.
    Obra T, Nakafuku M, Yamamoto M et al. Isolation and characterization of a gene encoding a G protein a-subunit from Schizo-saccharomyces pombe: involvement in mating and sporulation pathways. Proc Natl Acad Sci USA 1991; 88:5877-5881.Google Scholar
  38. 38.
    Herskowitz I. MAP kinase pathways in yeast-for mating and more. Cell 1995; 8o: 187–197.CrossRefGoogle Scholar
  39. 39.
    Hartwell L. Introduction to cell cycle controls. In: Hutchison C, Glover DM, eds. Cell Cycle Control. Oxford: IRL Press 19951-15.Google Scholar
  40. 40.
    Yamamoto M. The molecular control mechanisms of meiosis in fission yeast. TIBS 1996; 21: 1–22.Google Scholar
  41. 41.
    Fulton R, Van Ness B. Luminescent reporter gene assay for luciferase and ß-galoactosidase using a liquid scintillation counter. BioTechniq 1993; 15: 119–124.Google Scholar
  42. 42.
    King K, Dohiman HG, Thorner J et al. Control of yeast mating signal transduction by mammalian 02 adrenergic receptor and G, a-subunit. Science 199o; 250: 121–123.Google Scholar
  43. 43.
    Nielsen O, Davey J, Egel R. The rase function of Schizosaccharomyces pombe mediates pheromone-induced transcription. EMBO J 1992; 11: 1391–1392.PubMedGoogle Scholar
  44. 44.
    Forsburg SL. Comparison of Schizosaccharomyces pombe expression systems. Nucl Acids Res 1993; 21: 2955–2956.Google Scholar
  45. 45.
    Hirt H. A novel method for in situ screening of yeast colonies with the 13-glucuronidase reporter gene. Curr Genet 1991; 20:437-439.Google Scholar
  46. 46.
    Pobjecky N, Rosenberg GH, Dinter-Gottlieb G et al. Expression of the 13-glucuronidase gene under the control of the CaMV 35S promoter in Schizosaccharomyces pombe. Mol Gen Genet 1990; 220: 314-316.Google Scholar
  47. 47.
    Basi G, Schmid E, Maundrell K. TATA box mutations in the Schizosaccharomyces pombe nmti promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 1993; 123: 131–136.Google Scholar
  48. 48.
    Lang-Hinrichs C, Dössereck C, Fath I et al. Use of the Tn9o3 neomycin resistance gene for promoter analysis in the fission yeast Schizosaccharomyces pombe. Curr Genet 1990; 18: 511–516.PubMedCrossRefGoogle Scholar
  49. 49.
    Stolt P, Zillig W. Structure specific ds/ss-RNase activity in the extreme halophile Halobacterium halobium. Nucl Acids Res 1993; 24:5595-5599.Google Scholar
  50. 50.
    Xu ZJ, Moffett DB, Peters TR et al. The role of the leader sequence coding region in expression and assembly of bacteriorhodopsin. J Biol Chem 1995; 270: 24858–24863.Google Scholar
  51. 51.
    Humphery T, Birse CE, Proudfoot NJ. RNA 3’ end signals of the S. pombe ura4 gene comprise a site determining and efficiency element. EMBO J 1994; 132441–2451.Google Scholar
  52. 52.
    Oliveira CC, McCarthy JEG. The relationship between eukaryotic translation and mRNA stability. J Biol Chem 1995; 2708936-8943.Google Scholar
  53. 53.
    Dunn R, McCoy J, Simsek M et al. The bacteriorhodopsin gene. Proc Natl Acad Sci USA 1981; 11:6744-6748•Google Scholar
  54. 54.
    Sverdlov ED, Zozulya SA, Zaitseva EM et al. Genetic engineering studies of bacterioopsin gene. In: Ovchinnikov YA, ed. Proc 16th FEBS congr. Part C. VNU Science Press, 1985: 131–138.Google Scholar
  55. 55.
    Karnik S, Nassal M, Doi T et al. Structure-function studies on bacteriorhodopsin. II. Improved expression of the bacterio-opsin gene in Escherichia coli. J Biol Chem 1987; 262:9255-9263.Google Scholar
  56. 56.
    Pompejus M, Friedrich K, Teufel M et al. High-yield production of bacteriorhodopsin via expression of a synthetic gene in Escherichia coli. Eur J Biochem 1993; 211:27-35.Google Scholar
  57. 57.
    Hildebrandt V, Ramezani-Rad M, Swida U et al. Genetic transfer of the pigment bacteriorhodopsin in the eukaryote Schizosaccharomyces pombe. FEBS Lett 1989; 234137-140.Google Scholar
  58. 58.
    Karnik S, Doi T, Molday R et al. Expression of the archaebacterial bacterio-opsin gene with and without signal sequence in Escherichia coli: The expressed proteins are located in the membrane but bind retinal poorly. Proc Natl Acad Sci USA 1990; 87: 8955–8959.Google Scholar
  59. 59.
    Hildebrandt V, Polakowski F, Büldt G. Purple fission yeast: Overexpression and processing of the pigment bacteriorhodopsin. Photochem Photobiol 1991; 54: 1009–1016.Google Scholar
  60. 60.
    Hildebrandt V, Fendler K, Heberle J et al. Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane. Proc Natl Acad Sci USA 1993; 90: 3578–3582.PubMedCrossRefGoogle Scholar
  61. 61.
    Hampp N. Heat-proof proteins. Nature 1993; 366: 12.Google Scholar
  62. 62.
    Oesterhelt D, Bräuchle C, Hampp N. Bacteriorhodopsin: a biological material for information processing. Quat Rev Biophys 1991; 24: 425–478.CrossRefGoogle Scholar
  63. 63.
    Findlay JBC, Pappin DJC. The opsin family of proteins. Biochem J 1986; 238: 625–642.PubMedGoogle Scholar
  64. 64.
    Bridge RS. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim Biophys Acta 1990; 1016:293-327.Google Scholar
  65. 65.
    Grisshammer R, Tate CG. Overexpression of integral membrane proteins for structural studies. Quart Rev Biophys 1995; 28:315-422.Google Scholar
  66. 66.
    Brent R, Janssen. Yeast vectors. In: Ausubel FM, Brent R, Kingston RE et al. eds. Short protocols in molecular biology. New York: John Wiley & Sons 1992; 13: 19–24.Google Scholar
  67. 67.
    Russel P, Hall BD. The primary structure of the alcohol dehydrogenase gene from the fission yeast Schizosaccharomyces pombe. J Biol Chem 1983; 258: 143–149.Google Scholar
  68. 68.
    Hoffman CS, Winston F. A transcriptionally regulated expression vector for the fission yeast Schizosaccharomyces pombe. Gene 1989; 84:473-479.Google Scholar
  69. 69.
    Losson R, Lacroute F. Plasmids carrying the yeast OMP decarboxylase structural and regulatory genes: transcription regulation in a foreign environment. Cell 1983; 32: 371–377.Google Scholar
  70. 70.
    Chevallier MR, Lacroute F. Expression of the cloned uracil permease gene of Saccharomyces cerevisiae in a heterologous membrane. EMBO J 1982; 1:375-377.Google Scholar
  71. 71.
    Hirt H, Kögl M, Murbacher T, Heberle-Bors E. Evolutionary conservation of transcriptional machinery between yeast and plants as shown by the efficient expression from the CaMV 35S promoter and 35S terminator. Curr Genet 1990; 17: 473–479.Google Scholar
  72. 72.
    Russel P. Gene cloning and expression in fission yeast. In: Nasim A, Young P, Johnson BF, eds. Molecular biology of the fission yeast. San Diego: Academic Press Inc, 1989: 244–272.Google Scholar
  73. 73.
    Mitchison JM. Synchronous cultures and age fractionation. In: Campbell I, Duffus JH, eds. Yeast, a practical approach. Oxford: IRL Press, 1988: 51–64.Google Scholar
  74. 74.
    Maundrell K. Thiamine-repressible expression vectors PREP and pRIP for fission yeast. Gene 1993; 123: 127–130.Google Scholar
  75. 75.
    Chappell TG, Warren G. A galactosyltransferase from the fission yeast Schizosaccharomyces pombe. J Cell Biol 1989; 109: 2693–2702.CrossRefGoogle Scholar
  76. 76.
    Lehle L, Tanner W. Protein glycosylation in yeast. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins. Amsterdam: Elsevier Science BV 1995: 475–509.Google Scholar
  77. 77.
    Giannakoruros T, Armstrong J, Magee AI. Protein prenylation in Schizosaccharomyces pombe. FEBS Lett 1992; 297: 103–106.CrossRefGoogle Scholar
  78. 78.
    Lang-Hinrichs C, Queck I, Büldt G et al. The archaebacterial membrane protein bacterio-opsin is expressed and N-terminally processed in the yeast Saccharomyces cerevisiae. Mol Gen Genet 1994; 244: 183–188.PubMedCrossRefGoogle Scholar
  79. 79.
    Sander P, Grünewald S, Reiländer H et al. Expression of the human D25 dopamine receptor in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe: a comparative study. FEBS Lett 1994; 344:41-46.Google Scholar
  80. 80.
    Weber A, Menzlaff E, Arbinger B et al. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein. Biochem 1995; 34: 2621–2627.Google Scholar
  81. 81.
    Caspari T, Stadler R, Sauer N et al. Structure/Function relationship of the Chlorella Glucose/H+ symporter. J Biol Chem 1994; 269: 3498-3502.Google Scholar
  82. 82.
    Prentice HL. High efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucl Acids Res 1992; 20: 621.PubMedCrossRefGoogle Scholar
  83. 83.
    Grigorieff N, Ceska TA, Downing KH et al. Electron-crystallographic refinement of the structure of bacteriorhodopsin. Submitted.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Volker Hildebrandt
  • Dieter Oesterhelt

There are no affiliations available

Personalised recommendations