Fission Yeast Schizosaccharomyces pombe: An Attractive Host for Heterologous Protein Production

  • Yuko Giga-Hama
Part of the Biotechnology Intelligence Unit book series (BIOIU)


The fission yeast Schizosaccharomyces pombe (S. pombe) is a unicellular eukaryote belonging to the Ascomycetes. S. pombe was originally isolated from East African millet beer. The millet beer, according to a secondhand report derived from the description by Saare in a German journal in 1890, consisted of “a light brown liquid, which had thick grayish-white settlings, covering half the bottle, with mixed-in pieces and remnants from the millet used. The taste was acidulous, similar to that of sour leaven from the distillery, rotten, and not particularly pleasant.” Isolated S. pombe was sent from East Africa to Germany in 1890 and further cultivated to a pure culture. The first description of S. pombe by P. Lindner was published in a German brewery weekly journal1 in 1893. He chose as its name the Swahili word for beer, “pombe.” Microscopic examination revealed that the shape of each S. pombe cell is cylindrical, and rounded on the ends. Its length is 7–15 μm and its diameter is around 4 μm, yet it may fluctuate in size, depending especially on the culture conditions. S. pombe is called “fission yeast” because it only reproducesby means of fission, besides by means of spores. No budding is observed such as occurs in brewer’s yeast.


Mitochondrial Genome Golgi Apparatus Fission Yeast Yeast Species High Eukaryote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lindner P. Schizosaccharomyces pombe n. sp., ein neuer Gährung-serreger. Wochenschrift für Brauerei 1893; 10:1298–1300. Google Scholar
  2. 2.
    Beach D, Nurse P. High frequency transformation of the fission yeast Schizosaccharomyces pombe. Nature 1981; 290:140–142. Google Scholar
  3. 3.
    Russell P. Gene cloning and expression in fission yeast. In: Nasim A, Young P, Johnson BF, eds. Molecular Biology of the Fission Yeast. San Diego: Academic Press, Inc 1989:243–271. Google Scholar
  4. 4.
    Imai Y, Yamamoto M. The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and Gi arrest in the mating partner. Gene & Dev 1994; 8: 328–338.Google Scholar
  5. 5.
    Davey J. Isolation and quantitation of M-factor, a diffusible mating factor from fission yeast Schizosaccharomyces pombe. Yeast 1991; 7: 357–366.CrossRefGoogle Scholar
  6. 6.
    Thorner J. Pheromonal regulation of development in Saccharomyces cerevisiae. In: Strathern JN, Jones EW, Broach JR, eds. Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory. 1981: 143–180.Google Scholar
  7. 7.
    Beach DH. Cell type switching by DNA transcription in fission yeast. Nature 1983; 305: 682–687.CrossRefGoogle Scholar
  8. 8.
    Nurse P. Cell cycle control genes in yeast. Trends Genet 1985; 1: 51–55.CrossRefGoogle Scholar
  9. 9.
    Nasmyth K, Nurse P. Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 1981; 182: 119–124.PubMedCrossRefGoogle Scholar
  10. 10.
    Hagan IM, Hyams JS. The use of cell division cycle mutants to investigate the control of microtuble distribution in the fission yeast Schizosaccharomyces pombe. J Cell Sci 1988; 89: 343–357.PubMedGoogle Scholar
  11. 11.
    Hiraoka Y, Toda T, Yanagida M. The NDA3 gene of fission yeast encodes ß-tubulin: A cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 1984; 39: 349–358.PubMedCrossRefGoogle Scholar
  12. 12.
    McCully EK, Robinow CF. Mitosis in the fission yeast Schizo-saccharomyces pombe: A comparative study with light and electron microscopy. J Cell Sci 1971; 9: 475–507.Google Scholar
  13. 13.
    Erard M, Barker D, Geen J. Is chromosome condensation a phylogenetic marker? Stud Mycol 1987; 30: 267–277.Google Scholar
  14. 14.
    Forsburg SL, Nurse P. Cell cycle regulation in the yeasts S. cerevisiae and S. pombe. Annu Rev Cell Biol 1991; 7: 227–256.Google Scholar
  15. 15.
    Fan JB, Chikashige Y, Smith CL et al. Construction of a Noti restriction enzyme map of the fission yeast Schizosaccharomyces pombe genome. Nucl Acid Res 1989; 17: 2801–2818.CrossRefGoogle Scholar
  16. 16.
    Lennon GG, Lehrach H. Gene data base for the fission yeast Scizosaccharomyces pombe. Curr Genet 1992; 21: 1–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Williamson DH. Nucleus; chromosomes and plasmids. In: Rose AH, Harrison JT, eds. The Yeasts. London: Academic Press 1991; 4:433-488.Google Scholar
  18. 18.
    Goffeau A, Barrell BG, Bussey H et al. Life with 6000 genes. Science 1996; 274: 546–567.PubMedCrossRefGoogle Scholar
  19. 19.
    Kuhn RM, Clarke L, Carbon J. Clustered tRNA genes in Schizo-saccharomyces pombe centromeric DNA sequence repeats. Proc Natl Acad Sci USA 1991; 88: 1306–1310.PubMedCrossRefGoogle Scholar
  20. 20.
    Hegemann JH, Fleig U. The centromere of budding yeast. BioEssays 1993; 15: 451–460.PubMedCrossRefGoogle Scholar
  21. 21.
    Taylar JW, Bowman BH, Berbee ML et al. Fungal model organisms: Phylogenetics of Saccharomyces, Aspergillus, and Neurospora. Syst Biol 1993; 42: 440–457.CrossRefGoogle Scholar
  22. 22.
    Sipiczki M. Taxonomy and phylogenesis. In: Nasim A, Young P, Johnson BF, eds. Molecular Biology of the Fission Yeast. San Diego: Academic Press, Inc. 1989:431-452.Google Scholar
  23. 23.
    Spiczki M. Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie van Leeuwenhoek 1995; 68: 119–149.CrossRefGoogle Scholar
  24. 24.
    Kurtzman CP, Robnett CJ. Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryoyomyces and Schwanniomyces determined from partial ribosomal RNA sequences. Yeast 1991; 7: 61–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Kimura H, Ohta T. Eukaryotes-prokaryotes divergence estimated by 5S ribosomal RNA sequences. Nature (London) New Biol 1973; 243: 199–200.CrossRefGoogle Scholar
  26. 26.
    Hori H, Osawa S. Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proc Natl Acad Sci USA 1979; 76:381-385.Google Scholar
  27. 27.
    Huysmans E, Dams E, Vanderberghe A et al. The nucleotide sequences of the 5S rRNAs of four mushrooms and their use in studying the phylogenetic position of Basidiomycetes among the eukaryotes. Nucleic Acids Res 1983; 11: 2871–2880.PubMedCrossRefGoogle Scholar
  28. 28.
    Lang BF. The mitochondrial genome of Schizosaccharomyces pombe. In: O’Brien SJ, ed. Genetic Maps: Locus Maps of Complex Genomes. 6th ed, No. 3 Lower eukaryotes. New York: Cold Spring Harbor Laboratory Press. Plainview. 1993: 118–119.Google Scholar
  29. 29.
    Bostock CJ. Mitochondrial DNA in the fission yeast Scihzosaccharomyces pombe. Biochim Biophs Acta 1969; 195: 579–581.Google Scholar
  30. 30.
    Clark-Walker GD, Sriprakash KS. Sequence rearrangements between mitochondrial DNAs of Torulopsis glabrata and Kloeckera africana identified by hybridization with six polypeptide encoding regions from Saccharomyces cerevisiae mitochondrial DNA. J Mol Biol 1981; 151: 367–387.PubMedCrossRefGoogle Scholar
  31. 31.
    Anderson S, Bankier AT, Barrell BG et al. Comparison of the human and bovine mitochondrial genomes. In: Slonimski PP, Borst P, Attardi G, eds. Mitochondrial Genes. Cold Spring Harbor Laboratory, Cold Spring Harbor: New York. 1982:5-43.Google Scholar
  32. 32.
    Sankoff D, Leduc G, Antoine N et al. Gene order comparisons for phylogenetic inference; Evolution of the mitochondrial genome. Proc Natl Acad Sci 1992; 89: 6575–6579.Google Scholar
  33. 33.
    Lang BF, Ahne F, Bonen L. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. The cytochrome b gene has an intron closely related to the first two introns in the Saccharomyces cerevisiae coxi gene. J Mol Biol 1985; 18 4353-366.Google Scholar
  34. 34.
    Lang BF, Ahne F, Distler S et al. Sequence of the mitochondrial DNA, arrangement of genes and processing of their transcription in Schizosaccharomyces pombe. In: Schweyen RJ, Wolf K, Kandewitz F, eds. Mitochondria. De Gruyer, Berlin. 1983:313-329.Google Scholar
  35. 35.
    Fukui Y, Kaziro Y. Molecular cloning and sequence analysis of a ras gene from Schizosaccharomyces pombe. EMBO J 1985; 4: 687–691.PubMedGoogle Scholar
  36. 36.
    Otaka E, Higo K, Itho T. Yeast ribosomal proteins: VII, Cytoplasmic ribosomal proteins from Schizosaccharomyces pombe. Mol Gen Genet 1983; 191: 519–524.PubMedCrossRefGoogle Scholar
  37. 37.
    Otaka E, Ooi T, Itho T et al. Examination of protein sequence homologies: II Ribosomal protein YS25 from Saccharomyces cerevisiae and its counterparts from Schizosaccharomyces pombe, rat liver and Escherichia coli. J Mol Evol 1986; 23: 337–343.PubMedCrossRefGoogle Scholar
  38. 38.
    Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Guthrie C, Fink GR eds. Methods in Enzyme. San Diego: Academic Press, Inc. 1991; 194: 795–823.Google Scholar
  39. 39.
    Nishida H, Sugiyama J. Archiascomycetes. Detection of a major new lineage within the Ascomycota. Mycoscience 1994; 35: 361–366.CrossRefGoogle Scholar
  40. 40.
    Bruns TD, Vilgalys R, Barns SM, et al. Evolutionary relationships within the fungi: analysis of nuclear small subunit rRNA sequences. Mol Phylog Evol 1992; 1: 231–241.CrossRefGoogle Scholar
  41. 41.
    Berbee ML, Taylor JW. Dating the evolutionary radiations of the true fungi. Can J Bot 1993; 71: 1114–1127.CrossRefGoogle Scholar
  42. 42.
    Beach D, Durkacz B, Nurse P. Functional homologues cell cycle control genes in budding and fission yeasts. Nature 1982; 300: 706–709.PubMedCrossRefGoogle Scholar
  43. 43.
    Johnston LH, Baker DG, Nurse P. Cloning and characterization of the Schizosaccharomyces pombe DNA ligase CDC17. Gene 1986; 41: 321–325.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee MG, Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 1987; 327: 31–35.PubMedCrossRefGoogle Scholar
  45. 45.
    Draetta G, Brizuela L, Potashkin J et al. Identification of p34 and p13 human homologs o the cell cycle regulators of fission yest encoded by cdc+ and suci+ Cell 1987; 50: 319–325.Google Scholar
  46. 46.
    Maundrell K, Huchinson A, Shall S. Sequence analysis of ars elements in fission yeast. EMBO J 1988; 7: 2203–2209.PubMedGoogle Scholar
  47. 47.
    Dubey DD, Zhu J, Carlson DL et al. Three ARS elements contribute to the ura4 replication origin region in the fission yeast, Schizo-saccharomyces pombe EMBO J 1994; 13: 3638–3647.Google Scholar
  48. 48.
    Okuno Y, Okazaki T, Masukata H. Identification of a predominant replication origin in fission yeast. Nuc Acid Res 1997; 25: 530–536.CrossRefGoogle Scholar
  49. 49.
    Masukata H. Replication origins in human and S. pombe. Cell Technology (Saiboukougaku in Japanese). 1996; 15: 41–48.Google Scholar
  50. 50.
    Allshire RC, Cranston G, Gosden JR et al. A fission yeast chromosome can replicate autonomously in mouse cells. Cell 1987; 50: 391-403.Google Scholar
  51. 51.
    Russell P. Evolutionary divergence of the mRNA transcription initiation mechanism in yeast. Nature 1983; 301: 167–169.Google Scholar
  52. 52.
    Russell P. Transcription of the triosephosphate isomerase gene of S. pombe initiates from a start point different from that in S. cerevisiae. Gene 1985; 40: 125–130.Google Scholar
  53. 53.
    Fischli A, Schmid S, Coppolecchia R et al. The transcriptional initiation factor eIF4A from Schizosaccharomyces pombe is closely related to its mammalian counterpart. Yeast 1996; 12: 977–981.PubMedCrossRefGoogle Scholar
  54. 54.
    Benoist C, O’Hare K, Breathnach R et al. The ovalbumin gene-sequence of putative control regions. Nucleic Acid Res 1980; 8: 127–142.PubMedCrossRefGoogle Scholar
  55. 55.
    Belsham GJ, Barker DG, Smith AE. Expression of polyoma virus middle-T antigen in Saccharomyces cerevisiae. Eur J Biochem 1986; 156: 413–421.PubMedCrossRefGoogle Scholar
  56. 56.
    Bröker M, Ragg H, Karges HE. Expression of human antithrombin III in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biochem Biophys Acta 1987; 908: 203–213.PubMedCrossRefGoogle Scholar
  57. 57.
    Kuranda MJ, Robbins PW. Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1987; 84: 2585–2589.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones R, Moreno S, Nurse P et al. Expression of the SV40 promoter in fission yeast: identification and characterization of an APi-like factor. Cell 1988; 53: 659–667.PubMedCrossRefGoogle Scholar
  59. 59.
    Toyama R, Okayama H. Human chorionic gonadotropin a and human cytomegalovirus promoters are extremely active in the fission yeast S. pombe. FEBS Lett 1990; 268: 217–221.PubMedCrossRefGoogle Scholar
  60. 60.
    Toyama R, Bende SM, Dhar R. Transcriptional activity of the human immunodeficiency virus-1 LTR promoter in fission yeast Schizosaccharomyces pombe. Nucleic Acid Res 1992; 20: 2591–2596.PubMedCrossRefGoogle Scholar
  61. 61.
    Swaminathan S, Malhotra P, Manohar CF et al. Activation of a dual adenovirus promoter containing nonconsensus TATA motifs in S. pombe:role for TATA sequence in the efficiency of transcription. Nuc Acid Res 1993; 11: 2737Google Scholar
  62. 62.
    Woolford JL. Yeast pre-mRNA splicing. Yeast 1989; 5: 439–457.PubMedCrossRefGoogle Scholar
  63. 63.
    Prabhala G, Rosenberg GH, Kaufer NH. Architectural features of premRNA intron in the fission yeast Schizosaccharomyces pombe. Yeast 1992; 8: 171–182.PubMedCrossRefGoogle Scholar
  64. 64.
    Takeda T, Yamamoto M. Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 1987; 84: 3580–3584.PubMedCrossRefGoogle Scholar
  65. 65.
    Hindley J, Phear GA. Sequence of the cell division gene CDC2 from Schizosaccharomyces pombe; pattern of splicing and homology to protein kinases. Gene 1984; 31: 129–134.PubMedCrossRefGoogle Scholar
  66. 66.
    Davis TN, Urdea MS, Masiarz FR et al. Isolation of the yeast calmodulin gene: Calmodulin is an essential protein. Cell 1986; 47: 423–431.PubMedCrossRefGoogle Scholar
  67. 67.
    Guthrie L, Riedel N, Parker R et al. Genetic analysis of snRNAs and RNA processing in yeast. In: Hicks J, ed. Yeast Cell Biology Liss, New York 1986; 301–321.Google Scholar
  68. 68.
    Mount SM. A catalogue of splice junction sequences. Nucleic Acid Res 1982; 10: 459–472.PubMedCrossRefGoogle Scholar
  69. 69.
    Kishida M, Nagai T, Nakaseko Y et al. Meiosis-dependent mRNA splicing of the fission yeast Schizosaccharomyces pombe mesi’ gene. Curr Genet 1994; 25: 497–503.PubMedCrossRefGoogle Scholar
  70. 70.
    Gatermann KB, Hoffmann A, Rosenberg GH et al. Introduction of functional artificial introns into the naturally intronless ura4 gene of Schizosaccharomyces pombe. Mol Cell Biol 1989; 9: 1526–1535.Google Scholar
  71. 71.
    Brennwald P, Porter G, Wise JA. U2 small nuclear RNA is remarkably conserved between Schizosaccharomyces pombe and mammals. Mol Cell Biol 1988; 8: 5575–5580.PubMedGoogle Scholar
  72. 72.
    Porter G, Brennwald P, Wise JA. U1 small nuclear RNA from Schizosaccharomyces pombe has unique and conserved features and is encoded by an essential single-copy gene. Mol Cell Biol 1990; 10: 2874–2881.PubMedGoogle Scholar
  73. 73.
    Hughes JM, Koninngs DAM, Cesaraeni G. The yeast homologue of U3 snRNA. EMBO J 1987; 6: 2145–2155.PubMedGoogle Scholar
  74. 74.
    Käufer NF, Simanis V, Nurse P. Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature 1985; 318: 78–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Wickens M. How the messenger got its tail: addition of poly (A) in the nucleus. Trends Biochem Sci 1990; 15: 277–281.PubMedCrossRefGoogle Scholar
  76. 76.
    Humphrey T, Sadhale P, Platt T et al. Homologous mRNA 3’ end formation in fission and budding yeast. EMBO J 1991; 10: 3503–3511.PubMedGoogle Scholar
  77. 77.
    Forsburg SL. Codon usage table for Schizosaccharomyces pombe. Yeast 1994; 10: 1045–1047.PubMedCrossRefGoogle Scholar
  78. 78.
    Font de Mora J, Valentin E, Herrero E et al. Glycoprotein molecules in the wall of Schizosaccharomyces pombe wild-type cells and a morphologically altered mutant resistant to papulacandin B. J Gen Microbiol 1990; 136: 2251–2259.PubMedGoogle Scholar
  79. 79.
    Molano J, Bowers B, Cabib E. Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study. J Cell Biol 1980; 261: 15147–15152.Google Scholar
  80. 80.
    Horisberger M, Vonlanthen M, Rosset J. Localization of a-galactomannan and a wheat germ agglutinin receptors in Schizo-saccharomyces pombe. Arch Microbiol 1978; 119: 107–111.PubMedCrossRefGoogle Scholar
  81. 81.
    Sietsma JH, Wessels JGH. The occurrence of glucosaminoglycan in the wall of Scizosaccharomyces pombe. J Gen Micrbiol 1990; 136: 2261–2265.Google Scholar
  82. 82.
    Manners DJ, Meyer MT. The molecular structure of some glucans from the cell walls of Schizosaccharomyces pombe, Carbhydr Res 1977; 57: 189–203.CrossRefGoogle Scholar
  83. 83.
    Horisberger M, Rouvet-Vauthey M. Cell wall architecture of the fission yeast Schizosaccharomyces pombe. Experientia 1985; 41: 748–750.CrossRefGoogle Scholar
  84. 84.
    Kopeckâ M, Fleet GH, Phaff HJ. Ultrastructure of the cell wall of Schizosaccharomyces pombe following treatment with various glucanases. J Struc Biol 1995; 114: 140–152.Google Scholar
  85. 85.
    Kornfeld R, Kornfeld S. Assembly of aspargine-linked oligosaccharides. Annu Rev Biochem 1985; 54: 631–664.Google Scholar
  86. 86.
    Bush DA, Horisberger M, Horman I et al. The wall structure of Schizosaccharomyces pombe. J Gen Microbiol 1974; 81: 199–206.PubMedGoogle Scholar
  87. 87.
    Moreno S, Ruiz T, Sanchez Y et al. Subcellular localization and glycoprotein nature of the invertase from the fission yeast Schizo-saccharomyces pombe. Arch Microbiol 1985; 142: 370–374.PubMedCrossRefGoogle Scholar
  88. 88.
    Schweingruber AM, Schoenholzer F, Keller L et al. Glycosylation and secretion of acid phosphatase in Schizosaccharomyces pombe. Eur J Biochem 1986; 158: 133–140.PubMedCrossRefGoogle Scholar
  89. 89.
    Moreno S, Sanchez Y, Rodriguez L. Purification and characterization of the invertase from Schizosaccharomyces pombe. Biochem J 1990; 267: 697–702.PubMedGoogle Scholar
  90. 90.
    Dibenedetto G, Cozzani I. Nonspecific acid phosphatase EC- from Schizosaccharomyces pombe. Purification and physical chemical properties. Biochemistry 1975; 14: 2847–2852.Google Scholar
  91. 91.
    Ballou C, Ballou L, Ball G. Schizosaccharomyces pombe glycosylation mutant with altered cell surface properties. Proc Natl Acad Sci USA 1994; 91: 9327–9331.PubMedCrossRefGoogle Scholar
  92. 92.
    Chappell TG, Hajibagheri MAN, Asyscough K et al. Localization of an a 1,2 galactosyltransferase activity to the Golgi apparatus of Schizosaccharomyces pombe. Mol Biol Cell 1994; 5: 519–528.PubMedGoogle Scholar
  93. 93.
    Smith DG, Svoboda A. Golgi apparatus in normal cells and protoplasts of Schizosaccharomyces pombe. Microbios 1972; 5: 177–182.PubMedGoogle Scholar
  94. 94.
    Chappell TG, Warren G. A galactosyltransferase from the fission yeast Schizosaccharomyces pombe. J Cell Biol 1989; 109: 2693–2702.CrossRefGoogle Scholar
  95. 95.
    Kendall RL, Yamada R, Bradshaw RA. Cotranslational amino-terminal processing. Method Enzymol 1990; 185398–407.Google Scholar
  96. 96.
    Huang S, Elliott RC, Liu PS et al. Specificity of cotranslational amino-terminal processing of proteins in yeast. Biochemistry 1987; 26: 8242–8246.PubMedCrossRefGoogle Scholar
  97. 97.
    Moerschell RP, Hosokawa Y, Tsunasawa S et al. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. J Biol Chem 1990; 265: 19638–19643.PubMedGoogle Scholar
  98. 98.
    Schafer WR, Trueblood CE, Yang CC et al. Enzymatic coupling of cholesterol intermediates to a mating pheromone precursor and to the ras protein. Science 1990; 2491133–1139.Google Scholar
  99. 99.
    Giannakouros T, Armstrong J, Magee AI. Protein prenylation in Schizosaccharomyces pombe. FEBS Lett 1992; 297: 103–106.PubMedCrossRefGoogle Scholar
  100. 100.
    James G, Olson EN. Fatty acylated proteins as components of intra- cellular signaling pathways Biochemistry 1990; 29: 2623–2634.Google Scholar
  101. 101.
    Sambucetti LC, Schaber M, Kramer R et al. The fos gene product undergoes extensive post-translational modification in eukaryotic but not in prokaryotic cells. Gene 1986; 43: 69–77.PubMedCrossRefGoogle Scholar
  102. 102.
    Miyamoto C, Chizzomte R, Crowl R et al. Molecular cloning and regulated expression of the human c-myc gene in E. coli and Saccharomyces cerevisiae: comparison of the protein products. Proc Natl Acad Sci USA 1985; 82: 7232–7236.PubMedCrossRefGoogle Scholar
  103. 103.
    Jakubowicz T, Cytrynska M, Kowalczyk W et al. Phosphorylation of acidic ribosomal proteins by ribosome-associated protein kinases of Biochimica Polonica 1993; 40: 497–505.Google Scholar
  104. 104.
    Koegl M, Courtneidge SA, Superti-Furga G. Structural requirements for the efficient regulation of the Src protein tyrosine kinase by Csk. Oncogene 1995; 11: 2317–2329.PubMedGoogle Scholar
  105. 105.
    Romanos MA, Scorer CA, Clare JJ. Foreign gene expression in yeast: a Review. Yeast 1992; 423–488.Google Scholar
  106. 106.
    Suaréz-Renduele P, Villa L, Arbesú MJ et al. The proteolytic system of the fission yeast Schizosaccharomyces pombe. FEMS Microbiology Letters 1991; 81: 215–220.Google Scholar
  107. 107.
    Tabuchi M, Iwaihara O, Ohtani Y et al. Vacuolar protein sorting in fission yeast: cloning. biosynthesis transport and processing of carboxypeptidase Y from Schizosaccaromyces pombe. J Bacteriol 1997; 179(13):in press.Google Scholar
  108. 108.
    Uritani M, Muramatsu T, Yoshino K et al. Alteration of cellular components induced by nutrition shift-down in Schizosaccharomyces pombe. Yeast 1990; 6 (special issue): S136Google Scholar
  109. 109.
    Satoh S, Suzuki H, Widyastuti U. Identification and characterization of genes induced during sexual differentiation in Schizo-saccharomyces pombe. Current Genetics 1994; 2631–37.Google Scholar
  110. 110.
    Takegawa K, Dewald DB, Emr SC. Schizosaccharomyces pombe Vps34p, a phosphatidylinositol-specific PI 3-kinase essential for normal cell growth and vacuole morphology. J Cell Sci 1995; 108:3745-3756.Google Scholar
  111. 111.
    Davey J, Davis K, Imai Y et al. Isolation and characterization of Krp, a dibasic endopeptidase required for cell viability in the fission yeast Schizosaccharomyces pombe. EMBO 1994; 135910-5921.Google Scholar
  112. 112.
    Imai Y, Yamamoto M. Schizosaccharomyces pombe sxa if and sxa 2 + encode putative protease involved in the mating response. Mol Cell Biol 1992; 12: 1827–1834.PubMedGoogle Scholar
  113. 113.
    Ladds G, Rasmussen M, Davey J. Characterization of Sxa 2, a protease involved in pheromone communication in fission yeast. Biochemical Society Transactions 1995; 23: 565S.Google Scholar
  114. 114.
    Arbesu JM, Valle E, Saurez-Renduelles P. Purification and characterization of aminopeptidase YspI from Schizosaccharomyces pombe. Yeast 1993; 9: 637–644.PubMedCrossRefGoogle Scholar
  115. 115.
    Villa L, Suaretz-Rendueles P. Dipeptidyl aminopeptidase yspl mutants of Schizosaccharomyces pombe: Genetic mapping of dpat+ on chromosome III. FEMS Microbiology Lett 1994; 120: 211–216.CrossRefGoogle Scholar
  116. 116.
    Xu HP, White M, Marcus S et al. Concerted action of RAS and G proteins in the sexual response pathways of Schizosaccharomyces pombe. Mol Cell Biol 1994; 14: 50–58.PubMedGoogle Scholar
  117. 117.
    Obara T, Nakafuku M, Kaziro Y. Isolation and characterization of a gene encoding a G protein a subunit from Schizosaccaromyces pombe involvemnt in mating and sporulation pathways. Proc Natl Acad Sci USA 1991; 88: 5877–5881.PubMedCrossRefGoogle Scholar
  118. 118.
    Gallo GJ, Scheutz TJ, Kingston RE. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol Cell Biol 1991; 11: 281–288.PubMedGoogle Scholar
  119. 119.
    Gallo GJ, Prentice H, Kingston RE. Heat shock factor is required for growth at normal temperature in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 1993; 13: 749–761.PubMedGoogle Scholar
  120. 120.
    Shatzman AR. Expression systems. In: Davis J, Rosenberg M, eds. Current Opinion in Biotechnology. Current Biology Ltd UK, 1993: 4: 517–615.Google Scholar
  121. 121.
    Cirino G, Peers SH, Flower RJ et al. Human recombinant lipocortin I has acute local anti-inflammatory properties in the rat paw edema test. Proc Natl Acad Sci USA 1989; 86: 3428–3432.PubMedCrossRefGoogle Scholar
  122. 122.
    Cregg JM, Vedvick TS, Raschke WC. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 1993; 11: 905–910.PubMedCrossRefGoogle Scholar
  123. 123.
    Janowicz ZA, Merckelbach A, Eckart M et al. Expression system based on the methylotrophic yeast Hansenula polymoropha. Yeast 1988; 4: S155.CrossRefGoogle Scholar
  124. 124.
    Fleer R, Yeh P, Amellal N et al. Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Bio/Technology 1991; 9: 968–975.PubMedCrossRefGoogle Scholar
  125. 125.
    Heslot H, Nicaud J-M, Fabre E et al. Cloning of the alkaline extra-cellular protease gene of Yarrowia lipolytica and its use to express foreign genes. In: Nga BH, Lee YK eds. Microbiology Applications in Food Biotechnology. Amsterdam: Elsevier Science 1990 27-45.Google Scholar
  126. 126.
    Kondo K, Miura Y, Sone H et al. High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nature Biotech 1997; 1453-457.Google Scholar
  127. 127.
    Manna F, Del Giudice L, Schreil WH et al. Two extramitochondrial circular DNA species in the petite negative yeast Schizosaccharomyces pombe: relative abundance and size determination by electron microscopy. Curr Genet 1982; 5: 187–189.CrossRefGoogle Scholar
  128. 128.
    Broach JR. Construction of high copy number yeast vectors using 2 pm circle sequences. Meth Enzymol 1983; 101: 307–325.PubMedCrossRefGoogle Scholar
  129. 129.
    Yamamoto M. Fission yeast. In: Barr PJ, Brake AJ, Valenzuela P eds. Yeast Genetic Engineering. MA: Butterworth Publishers. 1989: 53–64.Google Scholar
  130. 130.
    Losson R, Lacroute F. Plasmids carring the yeast OMP decarboxylase structural and regulatory genes:Transcription regulation in a foreign environment. Cell 1983; 32: 371–377.PubMedCrossRefGoogle Scholar
  131. 131.
    Leroy D, Baldin V, Ducommun, B. Characterization of an active GST-human cdc2 fusion protein kinase expressed in the fission yeast Schizosaccharomyces pombe: A new approach to the study of cell cycle control proteins. Yeast 1994; 10: 1631–1638.Google Scholar
  132. 132.
    Bröker M, Bäuml O. New expression vectors for the fission yeast Schizosaccharomyces pombe. FEBS Lett 1989; 248: 105–110.PubMedCrossRefGoogle Scholar
  133. 133.
    Belsham GJ, Barker DG, Smith AE. Expression of polyoma virus middle-T antigen in S. cerevisiae. Eur J Biochem 1986; 156: 413–421.PubMedCrossRefGoogle Scholar
  134. 134.
    Pobjecky N, Rosenberg GH, Dinter-Gottlieb G et al. Expression of the ß-glucuronidase gene under the control of the CaMV 35 S promoter in Schizosaccharomyces pombe. Mol Gen Genet 1990; 220: 314–316.PubMedCrossRefGoogle Scholar
  135. 135.
    Atkins D, Izant JG. Expression and analysis of the green fluorescent gene in the fission yeast Schizosaccharomyces pombe. Curr Genet 1995; 28: 585–588.PubMedCrossRefGoogle Scholar
  136. 136.
    Zhao Y, Cao J, O’Gorman MRG et al. Effect of human immunodeficiency virus type 1 protein R (vpr) gene expression of basic cellular function of fission yeast Schizosaccharomyces pombe. J Virology 1996; 70: 5821–5826.PubMedGoogle Scholar
  137. 137.
    Ficca AG, Testa L, Tocchini-Valentini GP. The human ß2-adrenergic receptor expressed in Schizosaccharomyces pombe retains its pharmacological properties. FEBS Lett 1995; 377140–144.Google Scholar
  138. 138.
    Sander P, Grünewald S, Reiländer H et al. Expression of the human D2s dopamine receptor in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe:A comparative study. FEBS Lett 1994; 344: 41–46.PubMedCrossRefGoogle Scholar
  139. 139.
    Arkinstall S, Edgerton M, Payton M et al. Co-expression of the neurokinin NK2 receptor and G protein components in the fission yeast Schizosaccharomyces pombe. FEBS Lett 1995; 375: 183–187.PubMedCrossRefGoogle Scholar
  140. 140.
    Ueda K, Shimabuku AM, Konishi H et al. Functional expression of human P-glycoprotein in Schizosaccharomyces pombe. FEBS Lett 1993; 330: 279–282.PubMedCrossRefGoogle Scholar
  141. 141.
    Jackson MR, Burchell B. Expression of human liver epoxide hydro-lase in Schizosaccharomyces pombe. Biochem J 1988; 251: 931–933.PubMedGoogle Scholar
  142. 142.
    Loddenkötter B, Kammerer B, Fischer K et al. Expression of the functional mature chroloplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged protein by a single metal-affinity chromatography step. Proc Natl Acad Sci USA 1993; 90: 2155–2159.PubMedCrossRefGoogle Scholar
  143. 143.
    Sauer N, Caspari T, Klebl F et al. Functional expression of the Chlorella hexose transporter in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 1990; 87: 7949–7952.PubMedCrossRefGoogle Scholar
  144. 144.
    Yamazaki S, Sato K, Suhara K et al. Importance of the Proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P450. J Biochem 1993; 114: 652–657.PubMedGoogle Scholar
  145. 145.
    Smerdon GR, Ayes SJ, Walton EF. Production of human gastric lipase in the fission yeast Schizosaccharomyces pombe. Gene 1995; 165: 313–318.Google Scholar
  146. 146.
    Tokunaga M, Kawamura A, Yonekyu S et al. Secretion of mouse a-amylase on fission yeast Schizosaccharomyces pombe. Yeast 1993; 9: 379–387.PubMedCrossRefGoogle Scholar
  147. 147.
    Zârate V, Belda F. Characterization of the heterologous invertase produced by Schizosaccharomyces pombe from the SUC2 gene of Saccharomyces cerevisiae. J Appl Bacteriol 1996; 80: 45–52.PubMedCrossRefGoogle Scholar
  148. 148.
    Sanchez Y, Moreno S, Rodriguez L. Synthesis of Saccharomyces cerevisiae invertase by Schizosaccharomyces pombe. FEBS Lett 1988; 234:95-99.Google Scholar
  149. 149.
    Sande S, Privalsky ML. Reconstitution of thyroid hormone receptor and retinoic acid receptor function in the fission yeast Schizo-saccharomyces pombe. Molecular Endocrinology 1994; 8: 1455–1464.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Yuko Giga-Hama

There are no affiliations available

Personalised recommendations