Advertisement

Cloud and Fog Effects and Their Parameterisation in Regional Air Quality Models

  • Günther Mauersberger
  • A. I. Flossmann
  • H. R. Pruppacher
  • William R. Stockwell
  • Thomas Schönemeyer
  • R. Forkel
  • W. Seidl
  • A. Ruggaber
  • R. Dlugi
  • N. Chaumerliac
  • S. Cautenet
  • Peter J. H. Builtjes
  • Jan Matthijsen
Chapter
Part of the Transport and Chemical Transformation of Pollutants in the Troposphere book series (3373, volume 7)

Summary

For the special purpose of cloud chemistry a tool ASOCC was developed which is able to generate a differential equation system from a given set of chemical kinetics equations. Sensitivity and structure analysis have been performed to evaluate the great number of investigated reactions in the liquid phase and to derive a condensed mechanism for use in regional chemistry-transport models.

Keywords

Cloud Model Liquid Water Content Emission Estimation European Modelling Atmospheric Constituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mauersberger G., F. Müller; Characteristic times of cloud chemical systems, in: G. Angeletti and G. Restelli, (eds), Proc. 6th European Symposium on PhysicoChemical Behaviour of Atmospheric Pollutants, 1994, vol. 2, pp. 1029–1034.Google Scholar
  2. Müller D., G. Mauersberger; Cloud chemistry effects on tropospheric photo-oxidants in polluted atmosphere–model results, J. Atmos. Chem. 14 (1992) 153–165.CrossRefGoogle Scholar
  3. Müller D., K. Acker, W. Wieprecht, R. Auel; Study of interaction of photo-oxidants and acidic components between gas and liquid phase, EUROTRAC Annual Report Part 6, EUROTRAC ISS, Garmisch-Partenkirchen 1993, pp. 22–28.Google Scholar
  4. Pandis S.N., J.H. Seinfeld; Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry, J. Geophys. Res. 94 (1989) 1105–1126.CrossRefGoogle Scholar
  5. Alheit R.; PhD thesis, Meteorological Institute, Johannes Gutenberg University, Mainz 1991. Anthes R.A.; Mon. Wea. Rev. 105 (1977) 270–286.Google Scholar
  6. Bott A.; PhD thesis, Meteorological Institute, Johannes Gutenberg University, Mainz 1986.Google Scholar
  7. Chang J.S., R.A. Brost, I.S.A. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, C.J. Walcek; J. Geophys. Res. 92D (1987) 14681–14700.CrossRefGoogle Scholar
  8. Clark T.L.; J. Comput. Phys. 24 (1977) 186–215.CrossRefGoogle Scholar
  9. Dye J.E., J.J. Jones, W.P. Winn, T.A. Cerni, B. Gardiner, D. Lamb, R.L. Pitter, J. Hallett, C.P.R. Saunders; J. Geophys. Res. 91 (1986) 1231–1247.CrossRefGoogle Scholar
  10. Flossmann A.I.; Tellus 43B (1991) 201–321.Google Scholar
  11. Fritsch J.M., C.F. Chappell; J. Atmos. Sci. 37 (1980) 1734–1762.CrossRefGoogle Scholar
  12. Kuo H.L.; J. Atmos. Sci. 22 (1965) 40–63.CrossRefGoogle Scholar
  13. Kuo H.L.; J. Atmos. Sci. 31 (1974) 1232–1240.CrossRefGoogle Scholar
  14. Walcek C.J., G.R. Taylor; J. Atmos. Sci. 43 (1986) 339–355.CrossRefGoogle Scholar
  15. Wisner C.E., H.D. Orville, C.G. Myers; J. Atmos. Sci. 29 (1972) 1160–1181.CrossRefGoogle Scholar
  16. WMO weather modification research programme, WMO/TD-no. 139, rep. no. 8, 1986.Google Scholar
  17. Atkinson R, A.C. Lloyd; Evaluation of kinetic and mechanistic data for modeling of photochemical smog, J. Phys. Chem. Ref Data 13 (1984) 315–444.CrossRefGoogle Scholar
  18. Atkinson R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, J. Troe; Evaluated kinetic and photochemical data for atmospheric chemistry: supplement III; IUPAC Subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref Data 18 (1989) 881–1097.CrossRefGoogle Scholar
  19. Baulch D.L., R.A. Cox, R.F. Hampson, J.A. Kerr, J. Troe, R.T. Watson; Evaluated kinetic and photochemical data for atmospheric chemistry: supplement II; CODATA task group on gas phase chemical kinetics, J. Phys. Chem. Ref Data 13 (1984) 1294–1295.CrossRefGoogle Scholar
  20. Becker K.H., R.A. Cox, G. Le Bras, R. Lesclaux, G.K. Moortgat, H.W. Sidebottom, R. Zellner, K. Wirtz, C. Roehl, G.D. Hayman, LACTOZ Re-evaluation of the EMEP MSC-W Photo-oxidant Model, EUROTRAC Special Publication, EUROTRAC ISS, Garmisch-Partenkirchen, Germany, 1994.Google Scholar
  21. DeMore W. B., S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, M.J. Molina; Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 10, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 1992.Google Scholar
  22. Finlayson-Pitts, B.J, J.N. Pitts Jr.; Atmospheric Chemistry: Fundamentals and Experimental Techniques, John Wiley and Sons, New York, 1986.Google Scholar
  23. National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration and U.S. Air Force, U.S. Standard Atmosphere, U.S. Government Printing Office, Washington, D.C. 1976.Google Scholar
  24. Stockwell W.R., P. Middleton, J.S. Chang, X. Tang; The second generation regional acid deposition model chemical mechanism for regional air quality modeling, J. Geophys. Res. 95 (1990) 16343–16367.CrossRefGoogle Scholar
  25. Stockwell W. R.; On the HO2 + HO2 reaction: its misapplication in atmospheric chemistry models, J. Geophys. Res. 100 (1995) 11695–11698.CrossRefGoogle Scholar
  26. Bott A., W. Zdunkowski; Electromagnetic energy within dielectric spheres. J. Opt. Soc. Amer. 4A (1987) 1361–1365.CrossRefGoogle Scholar
  27. Chang J.S., A. Brost, I.S.A. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, C.J. Walcek; A three-dimensional Eulerian acid deposition model: physical concepts and formulation., J. Geophys. Res. (1987) 14681–14700.Google Scholar
  28. Forkel R., W. Seidl, A. Ruggaber, R. Dlugi; Fog chemistry during EUMAC joint cases: analysis of routine measurements in southern Germany, Met. Atmos. Phys. 57 (1995) 61–85.CrossRefGoogle Scholar
  29. Forkel R., W. Seidl, A. Ruggaber, R. Dlugi; Modellierung and Parametrisierung chemischer Reaktionen im Zusammenhang mit Nebelereignissen (EUMAC), Final report of project no. 521–4007–07EU738/8, 1994, pp. 279.Google Scholar
  30. Hass H., A. Ruggaber, Comparison of two algorithms for calculating photolysis rates including the effects of clouds. Met. Atmos. Phys. 57 (1995) 87–100.CrossRefGoogle Scholar
  31. Ruggaber A., R. Forkel, R. Dlugi; Spectral Actinic flux and its ratio to spectral irradiance by radiation transfer calculations, J. Geophys. Res. (1993) 1151–1162.Google Scholar
  32. Ruggaber A., R. Dlugi, T. Nakajima; Modelling of radiation quantities and photolysis frequencies in the troposphere. J. Atmos. Chem. (1994) 171–210.Google Scholar
  33. Ruggaber A., R. Dlugi, A. Bott, R. Forkel, H. Herrmann, H.W. Jacobi; Modelling of radiation quantities and photolysis frequencies in the aqueous phase in the troposphere, Atmos. Environ.,in press.Google Scholar
  34. Seidl W., R. Forkel, A. Ruggaber, R. Dlugi; Modelling of N205 loss due to surface reaction with aerosol particles. Poster, 12th Ann. Meeting of the AAAR, Oak Brook, Illinois, October 1993.Google Scholar
  35. Stockwell W.R., P. Middleton, J.S. Chang, X. Tang; The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. 95 (1990) 16343–16367.CrossRefGoogle Scholar
  36. Builtjes P.J.H.; The LOTOS-long term ozone simulation project. Summary report, TNORep. nr. IMW-R-921240, TNO Delft, The Netherlands, 1992.Google Scholar
  37. Dentener F.J., P.J. Crutzen; Reaction of N203 on tropospheric aerosols: impact on the global distributions of NOI, 03, and OH, J. Geophys. Res. 98 (1993) 7149–7163.CrossRefGoogle Scholar
  38. Jacob D.J.; Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res. 91 (1986) 9807–9826.CrossRefGoogle Scholar
  39. Jacob D.J., J. Liang,; Effect of Aqueous-phase Radical cloud chemistry on tropospheric Ozone, J. Geophys. Res.,submitted.Google Scholar
  40. Jonson J.E., I.S.A. Isaksen; Tropospheric ozone chemistry. Ale impact of cloud chemistry, J. Atmos. Chem. 16 (1993) 99–122.CrossRefGoogle Scholar
  41. Lelieveld J., P.J. Crutzen; The influences of cloud photochemical processes on tropospheric ozone, Nature 343 (1990) 227–233.CrossRefGoogle Scholar
  42. Matthijsen J.; Modelling of tropospheric ozone and clouds, ISBN 90–393–0559–5, PhD thesis University Utrecht, 1995.Google Scholar
  43. Matthijsen J., P.J.H. Builtjes, D.L. Sedlak; Cloud model experiments of the effect of iron and copper and tropospheric ozone under marine and continental conditions, Meteor. Atmos. Phys. in press.Google Scholar
  44. Schwartz S.E.; Gas-and aqueous-phase chemistry of HO2 in liquid water clouds, J. Geophys. Res. 89 (1984) 11589–11598.CrossRefGoogle Scholar
  45. van Weele M., P.G. Duynkerke; Effect of clouds on photo-dissociation of NO2: observations and modelling, J. Atmos. Chem. 16 (1993) 231–255.CrossRefGoogle Scholar
  46. Walcek C.J., Hong-Hsee Yuan, W.R. Stockwell; The Influence of Heterogeneous Atmospheric Chemical Reactions on the Formation of Ozone in Polluted Air, presented at 86th Annual Meeting & Exhibition, Denver, Colorado, June 13–18, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Günther Mauersberger
    • 1
  • A. I. Flossmann
    • 2
  • H. R. Pruppacher
    • 2
  • William R. Stockwell
    • 3
  • Thomas Schönemeyer
    • 3
  • R. Forkel
    • 4
  • W. Seidl
    • 4
  • A. Ruggaber
    • 5
  • R. Dlugi
    • 6
  • N. Chaumerliac
    • 6
  • S. Cautenet
    • 6
  • Peter J. H. Builtjes
    • 7
  • Jan Matthijsen
    • 7
  1. 1.Brandenburgian Technical University CottbusBerlinGermany
  2. 2.Institute for Atmospheric PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.Fraunhofer Institute for Atmospheric Environmental Research (IFU)Garmisch-PartenkirchenGermany
  4. 4.Fraunhofer Institut für Atmosphärische UmweltforschungGarmisch-PartenkirchenGermany
  5. 5.Meteorologisches InstitutUniversität MünchenMünchenGermany
  6. 6.LaMP/CNRS URA 267AubièreFrance
  7. 7.TNO Institute of Environmental SciencesDelftThe Netherlands

Personalised recommendations