Stability of Coulomb Systems with Magnetic Fields

I. The One-Electron Atom
  • Jürg Fröhlich
  • Elliott H. Lieb
  • Michael Loss


The ground state energy of an atom in the presence of an external magnetic field B (with the electron spin-field interaction included) can be arbitrarily negative when B is arbitrarily large. We inquire whether stability can be restored by adding the self energy of the field, ∫ B 2. For a hydrogenic like atom we prove that there is a critical nuclear charge, z c , such that the atom is stable for z < z c , and unstable for z > z c .


Stein Kato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields: III. Atoms in homogeneous magnetic field. Commun. Math. Phys. 79, 529–572 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Remark 3 in Brezis, H., Lieb, E.H.: Minimum action solution of some vector field equations. Commun. Math. Phys. 96, 97–113 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Daubechies, I., Lieb, E.H.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys. 90, 497–510 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Kato, T.: Schrödinger operators with singular potentials. Israel J. Math. 13, 135–148 (1972)Google Scholar
  5. 5.
    Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields: II. The many-electron atom and the one-electron molecule. Commun. Math. Phys. 104, 271–282 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in mathematical physics, essays in honor of Valentine Bargmann. Lieb, E.H., Simon, B., Wightman, A.S. (eds.). Princeton, NJ: Princeton University Press 1976Google Scholar
  8. 8.
    Loss, M., Yau, H.T.: Stability of Coulomb systems with magnetic fields: III. Zero energy bound states of the Pauli operator. Commun. Math. Phys. 104, 283–290 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Michel, F.C.: Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1–66 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press 1970Google Scholar
  11. 11.
    Straumann, N.: General relativity and relativistic astrophysics. Berlin, Heidelberg, New York, Tokyo: Springer 1984CrossRefGoogle Scholar
  12. 12.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16, 1782–1785 (1977)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields: I. General Interactions. Duke Math. J. 45, 847–883 (1978)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Jürg Fröhlich
    • 1
  • Elliott H. Lieb
    • 2
  • Michael Loss
    • 2
  1. 1.Theoretical PhysicsETH-HönggerbergZürichSwitzerland
  2. 2.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations