Skip to main content

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 7))

  • 380 Accesses

Abstract

In contemporary computation there is an almost unquenchable thirst for random numbers. One particularly intemperate class of customers is comprised of the diverse Monte Carlo methods.1 Or one may want to study a problem (or control a process) that depends on several parameters which one doesn’t know how to choose. In such cases random choices are often preferred, or simply convenient. Finally, in system analysis (including biological systems) random “noise” is often a preferred test signal. And, of course, random numbers are useful — to say the least — in cryptography.

“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.”

— John von Neumann

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.J. MacWilliams, N.J.A. Sloane: The Theory of Error-Correcting Codes (North-Holland, Amsterdam 1978)

    Google Scholar 

  2. G. Hoffmann de Visme: Binary Sequence (The English University Press, London 1971)

    Google Scholar 

  3. S.W. Golomb: Shift Register Sequences (Holden-Day, San Francisco 1967)

    MATH  Google Scholar 

  4. D. E. Knuth: The Art of Computer Programming, Vol. 2, Seminumerical Algorithms (Addison-Wesley, Reading, MA 1969)

    MATH  Google Scholar 

  5. E. N. Gilbert: Unpublished notes (1953)

    Google Scholar 

  6. T. Herlestan: “On the Complexity of Functions of Linear Shift Register Sequences,” in Proceedings of the International Symposium on Information Theory (IEEE, New York 1982) p. 166

    Google Scholar 

  7. H. J. Baker, F. C. Piper: Communications security, a survey of cryptography. IEE Proc. A 129, No.6, 357–376 (1982)

    Google Scholar 

  8. D. P. Robbins, E.D. Bolker: The bias of three pseudo-random shuffles. Ae-quationees Math. 22, 268–292 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Diaconis, M. Shahshahani: Generating a random permutation with random transpositions. Z. Wahrscheinlichkeitstheorie 57, 159–179 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. N.J. A. Sloane: “Encrypting by Random Rotations,” in [Ref. 27.11] pp. 71–128

    Google Scholar 

  11. T. Beth (ed.): Cryptography, Proc. Workshop, Burg Feuerstein, March 29-April 2 , 1982, Lecture Notes in Computer Science, Vol. 149 (Springer, Berlin, Heidelberg, New York 1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schroeder, M.R. (1997). Random Number Generators. In: Number Theory in Science and Communication. Springer Series in Information Sciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03430-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03430-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62006-8

  • Online ISBN: 978-3-662-03430-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics