Primitive Roots

  • Manfred R. Schroeder
Part of the Springer Series in Information Sciences book series (SSINF, volume 7)


In this chapter we introduce the concepts of order and the primitive root, two of the more fascinating and useful ideas in number theory. On the fundamental side, they helped the young Gauss to reduce the equation x 16 + x 15 + ... + x + 1 = 0 to several quadratic equations leading to the construction of the regular 17-gon. These same concepts also allow us to see why the decimal fraction of 1/7 has a period of length 6, while the decimal fraction for 1/11 has a period of only 2. And why does 1/99007599, written as a binary fraction, have a period of nearly 50 million 0’s and l’s? We shall see!


Period Length Primitive Root Great Common Divisor Decimal Fraction Coprime Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 13.1
    C.F. Gauss: Disquisitiones Arithmeticae [English transl. by A.A. Clarke, Yale University Press, New Haven 1966]MATHGoogle Scholar
  2. 13.2
    M. Abramowitz, I.A. Stegun (eds.): Handbook of Mathematical Functions (Dover, New York 1970)Google Scholar
  3. 13.3
    C.S. Ogilvy: Tomorrow’s Math (Oxford University Press, Oxford 1962)MATHGoogle Scholar
  4. 13.4
    L. J. Alex: Solving exponential diophantine equations. Math. Mag. 54, 259–260 (1981)MathSciNetMATHCrossRefGoogle Scholar
  5. 13.5
    S. W. Golomb: Shift Register Sequences (Holden-Day, San Francisco 1967)MATHGoogle Scholar
  6. 13.6
    H. E. Rowe: Signals and Noise in Communication Systems (Van Nostrand Reinhold, New York 1965)MATHGoogle Scholar
  7. 13.7
    M. R. Schroeder, D. Gottlob, K. F. Siebrasse: Comparative study of European concert halls. J. Acoust. Soc. Am. 56, 1195–1201 (1974)ADSCrossRefGoogle Scholar
  8. 13.8
    M. R. Schroeder: Binaural dissimilarity and optimum ceilings for concert halls: More lateral sound diffusion. J. Acoust. Soc. Am. 65, 958–963 (1979)ADSCrossRefGoogle Scholar
  9. 13.9
    M. R. Schroeder: Toward better acoustics for concert halls. Phys. Today 33, No. 10, 24–30, October (1979)Google Scholar
  10. 13.10
    H.W. Strube: More on the diffraction theory of Schroeder diffusors. J. Acoust. Soc. Am. 70, 633–635 (1981)ADSMATHCrossRefGoogle Scholar
  11. 13.11
    H.P. Lawther, Jr.: An application of number theory to the splicing of telephone cables. Am. Math. Monthly 42, 81–91 (1935)CrossRefGoogle Scholar
  12. 13.12
    G.K. Skinner: Sci. Am. August, 66 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Manfred R. Schroeder
    • 1
    • 2
  1. 1.Drittes Physikalisches InstitutUniversität GöttingenGöttingenGermany
  2. 2.Bell LaboratoriesAcoustics Speech and Mechanics ResearchMurray HillUSA

Personalised recommendations