Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

  • 106 Accesses

Abstract

One of the most intensely debated questions arising from the study of cellular responses to physical forces is how cells sense these mechanical stimuli and convert them into electrical, chemical or biochemical responses, the process known as mechanotransduction. Systems in which mechanotransduction is essential include the senses of hearing and touch as well as baroreception, the ability of the body to perceive blood pressure. In all three cases, mechanical forces move or deform specialized sensory structures such as hair cells (hearing); Pacinian corpuscles, Meissner’s corpuscles, and free nerve endings (touch); or baroreceptors. These physical stimuli lead to altered membrane potential, which in turn triggers the initiation of action potentials. In these examples it is widely accepted that the mechanosensitive elements are ion channels whose probability of being open is affected by physical deformation (reviewed by French1 and Sachs2,3). Once a physical stimulus is converted to an electrochemical signal, the transfer and amplification of the signal follows classic signal transduction pathways often utilized by agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. French AS. Mechanotransduction. Annu Rev Physiol 1992; 54: 135–52.

    Article  PubMed  CAS  Google Scholar 

  2. Sachs F. Baroreceptor mechanisms at the cellular level. Fed Proc 1986; 46: 12–16.

    Google Scholar 

  3. Sachs F. Mechanical transduction by membrane ion channels: a mini review. Mol Cell Biochem 1991; 104: 57–60.

    Article  PubMed  CAS  Google Scholar 

  4. Dull RO, Davies PF. Flow modulation of agonist (ATP)-response (Ca2+) coupling in vascular endothelial cells. Am J Physiol 1991; 261: H149–54.

    PubMed  CAS  Google Scholar 

  5. Mo M, Eskin SG, Schilling WP. Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am J Physiol 1991; 260: H1698–1707.

    PubMed  CAS  Google Scholar 

  6. Kuchan MJ, Frangos JA. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 1993; 264: H150–6.

    PubMed  CAS  Google Scholar 

  7. Kuchan MJ, Frangos JA. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 1994; 266: C628–36.

    PubMed  CAS  Google Scholar 

  8. Gooch KJ, Frangos JA. Flow-and bradykinin-induced nitric oxide production by endothelial cells is independent of membrane potential. Am J Physiol 1996; 270: C546–51.

    PubMed  CAS  Google Scholar 

  9. Busse R. Release of Nitric Oxide. Keynote lecture on endothelial-derived vasoactive factors. Basel, Switzerland, April 1992.

    Google Scholar 

  10. Berthiaume F, Frangos JA. Effects of flow on anchorage-dependent mammalian cells: secreted products. In: Frangos JA. Physical Forces and the Mammalian Cell. San Diego: Academic Press, 1993: 139–85.

    Chapter  Google Scholar 

  11. Melkumyants AM, Balashov SA, Veselova ES, Khayutin VM. Continuous control of the lumen of feline conduit arteries by flood rate. Cardiovasc Res 1987; 21: 863–70.

    Article  PubMed  CAS  Google Scholar 

  12. Pohl 1991.

    Google Scholar 

  13. Hutcheson IR and Griffith TM. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol 1991; 261: H257–62.

    PubMed  CAS  Google Scholar 

  14. Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J Cell Physiol 1990; 143: 100–4.

    Article  PubMed  CAS  Google Scholar 

  15. Eriksson C. Streaming potentials and other water-dependent effects in mineralized tissue. Ann NY Acad Sci 1974; 289: 321–338.

    Article  Google Scholar 

  16. Hung C, Allen F, Pollack S, Brighton C. Convective current density in the calcium response of cultured bone cells to fluid flow. 2nd international Conference on Cellular Engineering, 1995, San Diego.

    Google Scholar 

  17. Guharay F, Sachs F. Stretch-activated ion channels in tissue-cultured embryonic chick skeletal muscle. J Physiol 1984; 352: 685–701.

    PubMed  CAS  Google Scholar 

  18. Morris CE. Mechanosensitive ion channels. J. Membr Biol 1990; 113: 93–107.

    Article  PubMed  CAS  Google Scholar 

  19. Hudspeth AJ. How the ear’s works work. Nature 1989; 341: 397–404.

    Article  PubMed  CAS  Google Scholar 

  20. Pickles JO, Corey DP. Mechanoelectrical transduction by hair cells. TINS 1992; 15 (7): 254–9.

    PubMed  CAS  Google Scholar 

  21. Assad JA, Shepherd GMG, Corey DP. Tip-linked integrity and mechanical transduction in vertebrate hair cells. Neuron 1991; 7: 985–94.

    Article  PubMed  CAS  Google Scholar 

  22. Hudspeth AJ, Jacobs R. Proc Natl Acad Sci USA 1979; 76: 1506–9.

    Article  PubMed  CAS  Google Scholar 

  23. Corey DP, Hudspeth AJ. Nature 1979; 281: 675–7.

    Article  PubMed  CAS  Google Scholar 

  24. Ohmori H. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 1985; 359: 189–217.

    PubMed  CAS  Google Scholar 

  25. Sachs F. Baroreception.

    Google Scholar 

  26. Yang XC, Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 1989; 243: 1068–71.

    Article  PubMed  CAS  Google Scholar 

  27. Andersen MC, Yang M. Gadolinium and mechanotransduction of rat aortic baroreceptors. Am J Physiol 1992; 262: H1415–21.

    Google Scholar 

  28. Naruse K, Sokabe M. Involvement of stretch-activated ion channels in Ca’ mobilization to mechanical stretch in endothelial cells. Am J Physiol 1993; C1037–44.

    Google Scholar 

  29. White E, Le Guennec JJY, Nigretto JM, Gannier F, Argibay JA, Garnier D. The effects of increasing cell length on auxotonic contractions: membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp Physiol 1993; 78: 65–78.

    PubMed  CAS  Google Scholar 

  30. Sachs F. Modeling mechanical-electrical transduction in the heart. In: Mow VC, Guilak F, Tran-Son-Tay R, Hochmuth RM. Cell Mechanics and Cellular Engineering. New York: Springer-Verlag, 1994: 308–327.

    Google Scholar 

  31. Morris CE, Sigurdson WJ. Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science 1989; 243: 807–9.

    Article  PubMed  CAS  Google Scholar 

  32. Sigurdson WJ, Morris CE. Stretch-activated ion channels in growth cones of snail neurons. J Neurosci 1989; 2801.

    Google Scholar 

  33. Morris CE, Horn R. Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 1991; 251: 1246–9.

    Article  PubMed  CAS  Google Scholar 

  34. Sadoshima JI, Takahashi T, Jahn L, Izumo S. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA. 1992; 89: 9905–9.

    Article  PubMed  CAS  Google Scholar 

  35. Oleson SP, Clapham DE, Davies PF. Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331; 168–70.

    Google Scholar 

  36. Jacobs E, Cheliakine C, Gebremedhin D et al. Shear-activated channels in cell-attached patches of aortic endothelial cells. FASEB J.

    Google Scholar 

  37. Bolotina V, Najibi S, Palacino JJ, Pagano P, Cohen RA. Nitric oxide directly activates calcium dependent potassium channels in vascular smooth muscle. Nature. 1994; 368: 850–3.

    Article  PubMed  CAS  Google Scholar 

  38. Ruknudin A, Sachs F, Bustamante JO. Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol 1993; 265: H960–72.

    Google Scholar 

  39. Lane JW, McBride D, Hamill OP. Amiloride blocks the mechanosensitive cation channel in Xenopus oocytes. J Physiol (Lond) 1991; 441: 347–366.

    CAS  Google Scholar 

  40. Hamill OP, Lane JW, McBride DW. Amiloride: a molecular probe for mechanosensitive ion channels. Trends Pharmacol Sci 1992; 89: 7462–6.

    CAS  Google Scholar 

  41. Sigurdson WJ, Morris CE, Brezden BL et al. Stretch activation of a K channel in molluscan heart cells. J Exp Biol 1987; 127: 191–209.

    Google Scholar 

  42. Van Wagoner DR. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 1993; 72: 973–83.

    Article  PubMed  Google Scholar 

  43. Hilal-Dandan R, Brunton LL. Transmembrane mechanochemical coupling in cardiac myocytes: novel activation of G1 by hyposmotic swelling. Am J Physiol. 1995; 269: H798 - H804.

    PubMed  CAS  Google Scholar 

  44. Kuchan MJ, Frangos JA. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol. 1994; 266: C628–36.

    PubMed  CAS  Google Scholar 

  45. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260: 1124–7.

    Article  PubMed  CAS  Google Scholar 

  46. Morita T, Hiroki K, Maemura K, Yoshizumi M, Yazaki Y. Disruption of cytoskeletal structures mediated shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. J Clin Invest 1993; 92: 1706–12.

    Article  PubMed  CAS  Google Scholar 

  47. Li X, Nicklas RB. Mitotic forces control a cell-cycle checkpoint. Nature 1995; 373: 630–2.

    Article  PubMed  CAS  Google Scholar 

  48. Nicklas RB. How cells get the right chromosomes. Science 1997; 275: 632–637.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gooch, K.J., Tennant, C.J. (1997). Mechanotransduction. In: Gooch, K.J., Tennant, C.J. (eds) Mechanical Forces: Their Effects on Cells and Tissues. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03420-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03420-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03422-4

  • Online ISBN: 978-3-662-03420-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics