Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

  • 103 Accesses

Abstract

Perhaps the most readily noticeable example of a biological response to physical forces is the hypertrophy of skeletal muscle. The prominence of this effect probably is derived from the large percentage of body mass (~ 40%) composed of skeletal muscle. Cardiac and smooth muscle also respond dramatically to mechanical loading, but these responses are not as evident, probably due to their anatomical location and size (~ 10% of body mass).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eisenberg BR. Quantitative ultrastructure of mammalian skeletal muscle. In: Handbook of Physiology. Skeletal Muscle 1983; Am Physiol Soc: Bethesda, MD. p. 73–112.

    Google Scholar 

  2. Thomason DB et al. Time course of soleus muscle myosin expression during hindlimb suspension and recovery. J Appl Physiol 1987; 63: 130–7.

    PubMed  CAS  Google Scholar 

  3. Booth FW, Kirby CR. Changes in skeletal muscle gene expression consequent to altered weight bearing. Am J Physiol 1992; 262: R329–332.

    PubMed  CAS  Google Scholar 

  4. Thomason DB, Biggs RB, Booth FW. Altered protein metabolism and unchanged B-myosin heavy chain mRNA in unweighted soleus muscle. Am J Physiol 1989; 257: R300–5.

    PubMed  CAS  Google Scholar 

  5. Goldspink DF. Th influence of immobilization and stretch on protein turnover of rat skeletal muscle. J Physiol Lond 1977; 282 (264): 267–82.

    Google Scholar 

  6. Wong TS, Booth FW. Protein metabolism in rat tibialis anterior-muscle after stimulated chronic eccentric exercise. J Applied Physiol 1990; 69: 1718–24.

    CAS  Google Scholar 

  7. Pette D, Dusterhoft S. Altered gene expression in fast-twitch muscle induced by chronic low-frequency stimulation. Am J Physiol 1992; 262: R333–8.

    PubMed  CAS  Google Scholar 

  8. Salmons S, Vrbova G. The influence of activity on some contractile characteristics on mammalian fast and slow muscles. J Physiol Lond 1969; 201: 535–549.

    PubMed  CAS  Google Scholar 

  9. Puri PL et al. The molecular basis of myocardial hypertophy. Ann Ital Med Int 1994; 9 (3): 169–5.

    Google Scholar 

  10. Yamazaki T, Komuro I, Yazaki Y. Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol 1995; 27 (1): 133–40.

    Article  PubMed  CAS  Google Scholar 

  11. Gorza L et al. Isomyosin distribution in normal pressure overloaded rat ventricular myocardium. An immunohistochemical study. Circ Res 1981; 49: 1003–9.

    Article  PubMed  CAS  Google Scholar 

  12. Lompre AM et al. Myosin isoenzyme redistributes in chronic heart overload. Nature 1979; 282: 105–7.

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz K, Boheler KR, Bastie D. Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am J Physiol 1992; 262: R364–6.

    PubMed  CAS  Google Scholar 

  14. Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol Lond 1902; 28: 220–31.

    PubMed  CAS  Google Scholar 

  15. Harder DR. Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res 1987; 60: 102–7.

    Article  PubMed  CAS  Google Scholar 

  16. Katusic ZS, Shepherd JT, Vanhoutte PM. Endothelial-dependent contraction to stretch in canine basilar arteries. Am J Physiol 1987; 252: H671–3.

    PubMed  CAS  Google Scholar 

  17. Bulow A. Myogenic activity in isolated resistance arteries from skeletal muscle of the rat. Blood Vessels 1991; 28: 278–9.

    Google Scholar 

  18. Falcone JC, Davis MJ, Meininger GA. Endothelial independence of the myogenic response in skeletal muscle arterioles. Am J Physiol 1991; 260: H130–5.

    PubMed  CAS  Google Scholar 

  19. Hwa JJ, Bevan JA. Stretch-dependent (myogenic) tone in rabbit ear resistance arteries. Am J Physiol 1986; 250: H87–95.

    PubMed  CAS  Google Scholar 

  20. Kuo L, Chilian WM, Davis MJ. Coronary arteriolar myogenic response is independent of endothelium. Circ Res 1990; 66: 860–6.

    Article  PubMed  CAS  Google Scholar 

  21. MacPherson RS, McLeod LJ, Rasiah RL. Myogenic response of isolated pressurized rabbit ear artery is independent of endothelium. Am J Physiol 1991; H779–84.

    Google Scholar 

  22. McCarron JG, Osol G, Halpern W. Myogenic responses are independent in the rat pressurized posterior cerebral arteries. Blood Vessels 1989; 26: 415–9.

    Google Scholar 

  23. Meininger GA, Davis MJ. Cellular mechanisms involved in the vascular myogenic response. Am J Physiol 1992; 263: H647–59.

    PubMed  CAS  Google Scholar 

  24. Thoma R. Untersuchagen uberdie Histogenese and Histomechanik des Gefassystems. Stuttgart: Enke, 1893.

    Google Scholar 

  25. Kamiya A, Togawa T. Adapted regulation of wall shear stress to flow changes in the canine carotid artery. Am J Physiol 1980; 239: H14–21.

    PubMed  CAS  Google Scholar 

  26. Zarins CK et al. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 1987; 5: 413–20.

    PubMed  CAS  Google Scholar 

  27. Vandenburgh H, Kaufman S. In vitro model for stretch-induced hypertrophy pf skeletal muscle. Science 1979; 203: 265–8.

    Article  PubMed  CAS  Google Scholar 

  28. Wright E, MacMurray R, Banes A. Alignment rates of skeletal myocytes subjected to cyclic stretch in vitro. J Cell Bio 1988; 107: 453a.

    Google Scholar 

  29. Clarke MS, Feeback DL. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB J 1996; 10: 502–9.

    PubMed  CAS  Google Scholar 

  30. Hsieh HJ, Li NQ, Frangos JA. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J Cell Physiol 1993; 154: 143–51.

    Article  PubMed  CAS  Google Scholar 

  31. Leung DYM, Glagov S, Matthews MB. A new in vitro system for studying cell response to mechanical stimulation. Exp Cell Res 1977; 109: 285–98.

    Article  PubMed  CAS  Google Scholar 

  32. Leung DYM, Glagov S, Matthews MB. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vito. Science 1976; 191: 475–7.

    Article  PubMed  CAS  Google Scholar 

  33. Mills I, Cohen CR, Sumpio BE. Cyclic strain and vascular cell biology. In: Sumpio BE, ed. Hemodynamic Forces and Vascular Cell Biology. Austin: R.G. Landes Company, 1993; 66–89.

    Google Scholar 

  34. Isales C, Rosales O, Sumpio BE. Mediators and mechanism of cyclic strain and shear stress-induced vascular responses. In: Sumpio BE, ed. Hemodynamic Forces and Vascular Cell Biology. Austin: R.G. Landes Company, 1993.

    Google Scholar 

  35. Patrick CW, McIntire LV. Shear stress and cyclic strain Blood Purif 1995; 13 (3–4): 112–24.

    CAS  Google Scholar 

  36. Sottiurai V et al. Morphological alteration of cultured arterial smooth muscle cells by cyclic stretching. J Surg Res 1983. 35: 490–7.

    Article  PubMed  CAS  Google Scholar 

  37. Sumpio BE, Banes AJ. Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture. J Surg Res 1988; 44: 696–701.

    Article  PubMed  CAS  Google Scholar 

  38. Sterpetti AV et al. Modulation of arterial smooth muscle cell growth by haemodynamic forces. Eur J Vas Surg 1992; 6 (1): 16–20.

    Article  CAS  Google Scholar 

  39. Papadaki M, McIntire LV, Eskin SG. Effects of shear stress on growth kinetics of human aortic smooth muscle cells in vitro. Biotech Bioeng 1996; 50: 555–61.

    Article  CAS  Google Scholar 

  40. Sterpetti AV et al. Shear stress modulates the proliferation rate, protein synthesis, and mitogenic activity of arterial smooth muscle cells. Surgery 1993; 113 (6): 691–9.

    PubMed  CAS  Google Scholar 

  41. Sterpetti AV et al. Shear stress influences the release of platelet derived growth factor and basic fibroblast growth factor by arterial smooth muscle cells. Eur J Vasc Surg 1994; 8 (2): 138–42.

    Article  PubMed  CAS  Google Scholar 

  42. Alshihabi SN, Chang YS, Frangos JA et al. Shear stress-induced relsease of PGE2 and PGI2 by vascular smooth muscle cells. Biochem Biophys Res Commun 1996; 224: 3, 808–14.

    Article  PubMed  CAS  Google Scholar 

  43. Bodin P, Bailey D, Burnstock G. Increased flow-induced ATP release from isolated vascular endothelial cells but not smooth muscle cells. Br J Pharmacol 1991; 103 (1): 1203–5.

    Article  PubMed  CAS  Google Scholar 

  44. Sadoshima JI, Takahashi T, Jahn L, Isumo S. Role of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA 1992; 89: 9905–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gooch, K.J., Tennant, C.J. (1997). Muscle Cells. In: Gooch, K.J., Tennant, C.J. (eds) Mechanical Forces: Their Effects on Cells and Tissues. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03420-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03420-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03422-4

  • Online ISBN: 978-3-662-03420-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics