Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Articular cartilage provides an impact-resistant, low-friction covering for the surface of joints. It is composed mainly of water, which is nearly incompressible, allowing it to support some of the heaviest loads in the body while remaining flexible. As such, cartilage must transmit and distribute forces generated by body weight and motion to the underlying bone. These forces are of considerable magnitude; the pressure exerted on articular cartilage in the hip while standing is estimated to be o.7 MPa, or approximately 7 atm.* This rough estimate compares favorably to experimental values of approximately 1 MPa measured for the human hip.1, 2 Peak pressures during loading would be expected to be much higher. The stress measured in the hip prosthesis of an elderly woman walking, for instance, cycled from atmospheric pressure (o.1 MPa) to nearly 4 MPa at a frequency of approximately 1 Hz.3 Stresses approaching zo MPa were measured when the same individual stood up from a chair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mizrahi J, Solomon L, Kaufman B et al. J Bone Joint Surg 1981; 63B: 610–13.

    Google Scholar 

  2. Tepic S, Macirowski T, Mann RW. Proc Summer Comp Simulation Conf 1984; 2: 834–9.

    Google Scholar 

  3. Hodge WA, Fijan RS, Carlson KL et al. Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 1986; 83: 2879–83.

    Article  PubMed  CAS  Google Scholar 

  4. Stockwell RA. The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anatomy 1971; 109: 411–421.

    CAS  Google Scholar 

  5. Mayne R, von der Mark K. Collagens of cartilage. In: Cartilage, Structure, Function and Biochemistry. Vol. 1. New York: Academic Press, 1983: 181–214.

    Google Scholar 

  6. Byers R, Bayliss MT, Maroudas A et al. Hypothesizing about joints. In: Maroudas A, Holborrow J, eds. Studies in Joint Disease. London: Pitman Medical, 1983: 241–76.

    Google Scholar 

  7. Voet D, Voet JG. Sugars and polysaccharides. In: Biochemistry. New York: John Wiley and Sons, 1990: 260.

    Google Scholar 

  8. Comper WD. Physicochemical aspects of cartilage extracellular matrix. In: Hall B, Newman S, eds. Cartilage: Molecular Aspects. Boca Raton: CRC Press, 1991: 73.

    Google Scholar 

  9. Maroudas A, Mizrahi J, Katz EP et al. Physicochemical properties and functional behavior of normal and osteoarthritic human cartilage. In: Kuettner K, ed. Articular Cartilage Biochemistry. New York: Raven, 1986: 311–27.

    Google Scholar 

  10. Kato Y, Nomura Y, Daikuhara N et al. Cartilage-derived factor (CDF). I. Stimulation of proteoglycan synthesis in rat and rabbit costal chondrocytes in culture. Exp Cell Res 1980; 130: 73–81.

    Article  PubMed  CAS  Google Scholar 

  11. Kato Y, Nomura Y, Tsuji H et al. Cartilage-derived factor (CDF). II. Somatomedin-like action on cultured chondrocytes. Exp Cell Res 1981; 132: 339–47.

    Article  PubMed  CAS  Google Scholar 

  12. Seyedin SM, Rosen DM. Cartilage growth and differentiation factors. In: Hall B, Newman S, eds. Cartilage: Molecular Aspects. Boca Raton: CRC Press, 1991: 135.

    Google Scholar 

  13. Trippel SB. Growth factor actions on articular cartilage. J Rheum 1995; 22(1) suppl 43: 129–32.

    Google Scholar 

  14. Luyton FP, Hascall CV, Nissley SP et al. Insulin-like growth factor maintained steady state metabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys 1988; 267: 416–25.

    Article  Google Scholar 

  15. Osborn KD, Trippel SB, Mankin HJ. Growth factor stimulation of adult articular cartilage. J Orthop Res 1989; 7: 35–42.

    Article  PubMed  CAS  Google Scholar 

  16. Jones KL, Addison J. Pituitary growth factor as a stimulator of growth in culture of rabbit articular chondrocytes. Endocrinology 1975; 97: 359–65.

    Article  PubMed  CAS  Google Scholar 

  17. Sachs BL, Goldberg VM, Moskowitz RW et al. Response of articular chondrocytes to pituitary fibroblast growth factor (FGF). J Cell Physiol 1982; 112: 51–9.

    Article  PubMed  CAS  Google Scholar 

  18. Kato Y, Gospodarowicz D. Sulfated proteoglycan synthesis by confluent cultures of rabbit costal chondrocytes grown in the presence of fibroblast growth factor. J Cell Biol 1984; 100: 477–85.

    Article  Google Scholar 

  19. Rosen DM, Stempien SA, Thompson AY et al. Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol 1988; 134: 337–46.

    Article  PubMed  CAS  Google Scholar 

  20. Redini F, Lafuma C, Pujol J-P et al. Effects of cytokines and growth factors on the expression of elastase activity by hyman synoviocytes, dermal fibroblasts, and rabbit articular chondrocytes. Biochem Biophys Res Commun 1988; 155: 786–93.

    Article  PubMed  CAS  Google Scholar 

  21. Seyedin SM, Rosen DM. Cartilage growth and differentiation factors. In: Hall B, Newman S, eds. Cartilage: Molecular Aspects. Boca Raton: CRC Press, 1991: 139.

    Google Scholar 

  22. van Lent PLEM, van de Loo FAJ, van den Bersselaar et al. Chondrocyte nonresponsiveness of arthritic articular cartilage caused by short-term immobilization. J Rheumatol 1991; 18: 709–15.

    PubMed  Google Scholar 

  23. Helminen H, Jurvelin J, Kiviranta I et al. Joint loading effectson articular cartilage: a historical review. In: Helminen H, Kiviranta I, Tammi M, eds. Joint Loading: Biology and Health of Articular Structures. Bristol: John Wright, 1987: 1–46.

    Google Scholar 

  24. Paukkonen K, Selkainaho K, Jurvelin J et al. Cells and nuclei of articular cartilage chondrocytes in young rabbits enlarged after nonstrenuous physical exercise. J Anat 1985; 142: 13–20.

    PubMed  CAS  Google Scholar 

  25. Bjelle AO. Content and composition of glycosaminoglycans in human knee joint cartilage. Variation with site and age in adults. Conn Tiss Res 1975; 3: 141–7.

    Article  CAS  Google Scholar 

  26. Roberts S, Weightman B, Urban JPG et al. Mechanical and biochemical properties of human articular cartilage in osteoarthritic femoral heads and in autopsy specimens. J Bone Joint Surg [Br]1986; 68: 278–88.

    Google Scholar 

  27. Slowman SD, Brandt KD. Composition and glycosaminoglycan metabolism of articular cartilage from habitually loaded and habitually unloaded sites. Arthritis Rheum 1986; 29: 88–94.

    Article  PubMed  CAS  Google Scholar 

  28. Jurvelin J, Helminen H, Lauritsalo S. Influences of joint immobilization and running exercise on articular cartilage surfaces of young rabbits. Acta Anat 1985; 122: 62–8.

    Article  PubMed  CAS  Google Scholar 

  29. Palmoski M, Perricone E, Brandt KD. Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum 1979; 22: 508–17.

    Article  PubMed  CAS  Google Scholar 

  30. Saamenen AM, Tammin M, Kiviranta I et al. Maturation of proteoglycan matrix in articular cartilage under increased and decreased joint loading. Conn Tiss Res 1987; 16: 163–75.

    Article  Google Scholar 

  31. Kiviranta I, Tammi M, Jurvelin J et al. Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res 1988; 6: 188–95.

    Article  PubMed  CAS  Google Scholar 

  32. Afoke NYP, Byers PD, Hutton WC. Contact pressures in the human hip joint. J Bone Joint Surg 1987; 69B: 536–42.

    CAS  Google Scholar 

  33. Muir H, Carney SL. Pathological and biochemical changes in cartilage and other tissues of the canine knee rsulting from induced joint instability. In: Helminen HJ, Kiviranta I, Tammi M, eds. Joint Loading: Biology and Health of Articular Structures. Bristol: John Wright, 1987: 47–63.

    Google Scholar 

  34. Hoch DH, Grodzinsky AJ, Koob TJ et al. Early changes in material properties of rabbit articular cartilage after menisectomy. J Orthop Res 1983; 1: 4–12.

    Article  PubMed  CAS  Google Scholar 

  35. Dieppe P, Kirwan J. The localization of osteoarthritis. Br J Rheumatol 1994; 33: 201–4.

    Article  PubMed  CAS  Google Scholar 

  36. Gray ML, Pizzanelli AM, Lee RC et al. Kinetics of the chondrocyte biosynthetic response to compressive loading and release. Biochim Biophys Acta 1989; 991: 415–25.

    Article  PubMed  CAS  Google Scholar 

  37. Sah RL, Grodzinsky AJ, Plaas AHK et al. Effects of tissue compression on the hyaluronate binding properties of newly synthesized proteoglycans in cartilage explants. Biochem J 1990; 267: 803–8.

    PubMed  CAS  Google Scholar 

  38. Sah RL, Doong JY, Grodzinsky AJ et al. Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage ex-plants. Arch Biochem Biophys 1991; 286: 20–9.

    Article  PubMed  CAS  Google Scholar 

  39. Larsson T, Aspden RM, Heinegard D. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix 1991; 11: 388–94.

    Article  PubMed  CAS  Google Scholar 

  40. Sah RL, Kim YJ, Doong JH et al. Biosynthetic response of cartilage ex-plants to dynamic compression. J Orthop Res 1989; 7: 619–36.

    Article  PubMed  CAS  Google Scholar 

  41. Kim YJ, Grodzinsky AJ, Plaas AHK et al. The differential aspects of static compression on the synthesis of specific cartilage matrix components. Trans Am Orthop Res Soc 1992; 17: 108.

    Google Scholar 

  42. Jones IL, Klamfeldt A, Sandstrom T. The effect of continuous mechanical pressure upon the turnover of articular cartilage proteoglycans in vitro. Clin Orthop 1982; 165: 283–9.

    PubMed  CAS  Google Scholar 

  43. Schneiderman R, Kevet D, Maroudas A. Effects of mechanical and osmotic pressure on the rate of glycosaminoglycogen synthesis in the human adult femoral head cartilage: an in vitro study. J Orthop Res 1986; 4: 393–408.

    Article  PubMed  CAS  Google Scholar 

  44. Parkkinen JJ, Lammi MJ, Helminen HJ et al. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 1992; 10: 610–20.

    Article  PubMed  CAS  Google Scholar 

  45. Weightman B, Kempson G. Load carriage. In: Freeman MAR, ed. Adult Articular Cartilage. London: Pitman Medical, 1979; 293–341.

    Google Scholar 

  46. Lee RC, Rich JB, Kelley KM. A comparison of in vitro cellular responses to mechanical electrical stimulation. Am Surg 1982; 48: 567–74.

    PubMed  CAS  Google Scholar 

  47. Armstrong CG, Lai WM, Mow VC. J Biomech Eng 1984; 106: 165–73.

    Article  PubMed  CAS  Google Scholar 

  48. Watt FM. The extracellularx and cell shape. Trends Biochem Sci 1986; 11: 482–5.

    Article  CAS  Google Scholar 

  49. Benya PD, Brown PD, Padilla SR. Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondroctyes to reexpress the differentiated collagen phenotype without a change in shape. J Cell Biol 1988; 106: 161–70.

    Article  PubMed  CAS  Google Scholar 

  50. Benya PD, Shaffer JD. Dedifferentated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels.Cell 1982; 30: 215–24.

    CAS  Google Scholar 

  51. Brown PD, Benya PD. Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid an dihydrocytochalasin B-induced reexpression. J Cell Biol 1988; 106: 171–9.

    Article  PubMed  CAS  Google Scholar 

  52. Buschmann MD, Gluzband YA, Grodzinsky AJ. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 1995; 108: 1497–1508.

    PubMed  CAS  Google Scholar 

  53. Freeman PM, Natarajan R, Kimura JH. Chondrocyte cells respond mechanically to compressive loads. J Orthop Res 1994 12: 311–20.

    Article  PubMed  CAS  Google Scholar 

  54. Lee DA, Bader DL Alterations in chondrocyte shape in agarose in response to mechanical loading and its response to matrix production. Trans Orth Res Soc 1994; 19: 103.

    Google Scholar 

  55. Ohara BP, Urban JPG, Maroudas A. Influencce of cyclic loading on the nutrition of articular cartilage. [Ann Rheumatic Diseases] 1990; 49: 536–9.

    Article  CAS  Google Scholar 

  56. Maroudas A, Bullough PG, Swanson SA et al. The permeability of articular cartilage. J Bone Joint Surg [Br] 1968; 50: 166–77.

    CAS  Google Scholar 

  57. Kim Y, Sah RLY, Grodzinsky AJ. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. 1994; 311 (1): 1–12.

    CAS  Google Scholar 

  58. Spilker RL, Suh JK, Mow VC Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis. 1990; 112: 138–46.

    CAS  Google Scholar 

  59. Smith RL, Donlon BS, Gupta MK et al. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 1995; 13 (6): 824–31.

    Article  PubMed  CAS  Google Scholar 

  60. Hall AC, Urban JPG, Gehl KA. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 1991; 9: 1–10.

    Article  PubMed  CAS  Google Scholar 

  61. Kimura JH, Schipplein OD, Kuettner KE et al. Effects of hydrostatic loading on extracellular matrix formation. Trans Orthop Res Soc 1985; 10: 365.

    Google Scholar 

  62. Lippiello L, Kaye C, Neumata T et al. In vitro metabolic response of articular cartilage segments to low levels of hydrostatic pressure. Connect Tissue Res 1985; 13: 99–107.

    Article  PubMed  CAS  Google Scholar 

  63. Ishihara H, Urban JPG, Hall AS. The effect of physiological hydrostatic pressures on synthesis in different regions of the invertebral disc. J Physiol [in press].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gooch, K.J., Tennant, C.J. (1997). Chondrocytes. In: Gooch, K.J., Tennant, C.J. (eds) Mechanical Forces: Their Effects on Cells and Tissues. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03420-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03420-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03422-4

  • Online ISBN: 978-3-662-03420-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics