Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

  • 108 Accesses

Abstract

The hardness and resiliency of bone comes from its mineralized organic matrix. This matrix is composed primarily of collagen fibers,1 which gives bone its tensional strength. Among the fibers are proteoglycans that are believed to control the deposition of the calcium salts that hold the fibers tightly in place and provide compact bone with its compressional strength. The presence of these salts is one of the primary differences between bone and cartilage matrix, which otherwise have similar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guyton AC. Textbook of Medical Physiology. 8th ed. Philadelphia: WB Saunders, 1991: 872–4.

    Google Scholar 

  2. Galilei G. Discorsi e dimonstrzioni mathematiche intorna a due nuove scieze. In: Treharne RW. Review of Wolffs Law and its proposed means of operation. Orthopaed Rev 1981; 10: 35.

    Google Scholar 

  3. Meyer GH. Die Architektur der Spongiosa. Arch Anat Physiol Wiss Med 1867; 34: 615–28.

    Google Scholar 

  4. Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald, 1892.

    Google Scholar 

  5. Jaworski ZFG, Uhthoff HK. Reversibility of nontraumatic disuse osteoporosis during its active phase. Bone 1986; 7: 431–9.

    Article  PubMed  CAS  Google Scholar 

  6. Li XJ, Jee WSS, Chow S-Y et al. Adaptation of cancellous bone to aging and immobilization in the rat: a single photon absorptiometry and histomorphometry study. Anat Rec 1990; 227: 12–24.

    Article  PubMed  CAS  Google Scholar 

  7. Mack PB, LaChance PA. Effects of recumbency and space flight on bone density. Am J Clin Nutr 1967; 20: 1194.

    PubMed  CAS  Google Scholar 

  8. Morey ER, Baylink DJ. Inhibition of bone formation during space flight. Science 1978; 201: 1138.

    Article  PubMed  CAS  Google Scholar 

  9. Donaldson CL, Hulley SB, Vogel JM et al. Effect of prolonged bed rest on bone mineral. Metabolism 1970; 19: 1071–84.

    Article  PubMed  CAS  Google Scholar 

  10. Burr DB, Schaffler MB, Yang KH et al. Skeletal change in response to altered strain environments: is woven bone a response to elevated strain? Bone 1989; 10: 223–33.

    Article  PubMed  CAS  Google Scholar 

  11. Hert J, Liskova M, Landrgot B. Influence of the long-term continuous bending on the bone: an experimental study on the tibia of a rabbit. Folia Morphol (Prague) 1969; 27: 389–99.

    Google Scholar 

  12. Lanyon LE, Goodship AE, Pye CJ et al. Mechanically adaptive bone remodeling. J Biomech 1982; 15: 141–54.

    Article  PubMed  CAS  Google Scholar 

  13. Turner CH, Forwood MR, Rho J et al. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res 1994; 9: 8797.

    Google Scholar 

  14. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37: 411–417.

    Article  PubMed  CAS  Google Scholar 

  15. Karlsson MK, Johnell O, Obrant KJ. Is bone mineral density advantage maintained long-term in previous weight lifters? Calcif Tissue Int 1995; 57: 325–8.

    Article  PubMed  Google Scholar 

  16. Arrand S. Aviation Space Env Med 1992, 14–20.

    Google Scholar 

  17. Roer and Dillman J. Bone growth and calcium loss during simulated weightlessness in the rat. Appl Physiol 1990; 68: 13–20.

    Google Scholar 

  18. Buckley MJ, Banes AJ, Jordan RD. The effects of mechanical strain on osteoblasts in vitro. J Oral Maxillofac Surg 1990; 48: 276–82.

    Article  PubMed  CAS  Google Scholar 

  19. Carter DR, Caler WE. A cumulative damage model for bone fracture. J Orthop Res 1985; 3: 84–90.

    Article  PubMed  CAS  Google Scholar 

  20. Burr DB, Martin RB, Schaffler MB et al. Bone remodelling in response to in vivo fatigue microdamage. J Biomech 1985; 18: 189–200.

    Article  PubMed  CAS  Google Scholar 

  21. Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone 1993; 14: 103–9.

    Article  PubMed  CAS  Google Scholar 

  22. Bargren JH, Tilson DH. Prevention of displaced fatigue fractures of the femur. J Bone Joint Surg 1971; 53A: 1115, 1971.

    Google Scholar 

  23. Krause GR, Thompson JR Jr. March fracture: an analysis of two hundred cases. Am J Roentgenol Radium Ther Nucl Med 1944; 52: 281.

    Google Scholar 

  24. Gilbert RS, Johnson HA. Stress fractures in military recruits: a review of twelve years experience. Milit Med 1966; 131: 716.

    Google Scholar 

  25. Morris JM, Blickenstaff LD. Fatigue Fractures. Springfield: Charles C Thomas, 1967.

    Google Scholar 

  26. Carter DR, Hayes WC. Compact bone fatigue damage: a microscopic examination. Clin Orthop 1977; 127: 265–74.

    PubMed  Google Scholar 

  27. Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 1987; 2: 73–85.

    PubMed  CAS  Google Scholar 

  28. Burr DB, Martin RB. Mechanisms of bone adaptation to the mechanical environment. Triangle: Sandoz J Med Sci 1992; 31: 59–76.

    Google Scholar 

  29. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 1995; 57: 344–58.

    Article  PubMed  CAS  Google Scholar 

  30. Turner CH, Forwood MR, Rho J et al. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Min Res 1994; 9: 87–97.

    Article  CAS  Google Scholar 

  31. Lanyon LE, Rubin CT. Static versus dynamic loads as an influence on bone remodeling. J Biomech 1984; 17: 897–905.

    Article  PubMed  CAS  Google Scholar 

  32. Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J 1994; 8: 875–8.

    PubMed  CAS  Google Scholar 

  33. Otter MW, Shoenung J, Williams WS. Evidence for different sources of stress-generated potentials in wet and dry bone. J Orthop Res 1985; 3: 321–4.

    Article  PubMed  CAS  Google Scholar 

  34. Salzstein RA, Pollack SR. Electromechanical potentials in cortical bone. II. Experimental analysis. J Biomech 1987; 20: 271–80.

    Article  PubMed  CAS  Google Scholar 

  35. Scott GC, Korostoff E. Oscillatory and step response electromechanical phenomena in human and bovine bone. J Biomech 1990; 23: 127–43.

    Article  PubMed  CAS  Google Scholar 

  36. Otter MW, Palmieri VR, Wu DD et al. A comparative analysis of streaming potentials in vivo and in vitro. J Orthop Res 1992; 10: 710–9.

    Article  PubMed  CAS  Google Scholar 

  37. Hilsley MV, Frangos JA. Review: Bone tissue engineering: the role of interstitial fluid flow. Biotech Bioeng 1994; 43: 573–81.

    Article  Google Scholar 

  38. Montgomery RJ, Sutker BD, Bronk JT et al. Interstitial fluid flow in cortical bone. Microvasc Res 1988; 35: 295–307.

    Article  PubMed  CAS  Google Scholar 

  39. Arnaud SB, Sherrard DJ, Maloney N et al. Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system. Aviat Space Environ Med 1992; 63: 14–20.

    PubMed  CAS  Google Scholar 

  40. Felsing NE, Brasel J, Cooper DM. Effect of low-and high-intensity exercise on circulating growth hormone in men. J Clin Endocrinol Metab 1992; 75: 157–62.

    Article  PubMed  CAS  Google Scholar 

  41. Maiter D, Underwood LE, Maes M et al. Different effects of intermittent and continuous growth hormone (GH) administration on serum somatomedin-C/insulin-like growth factor I and liver GH receptors in hypophysectomised rats. Endocrinology 1988; 123: 1053–9.

    Article  PubMed  CAS  Google Scholar 

  42. Rawlinson SCF, Mohan S, Baylink DJ et al. Exogenous prostacyclin, but not prostaglandin E2, produced similar responses in both G6PD activity and RNA production as mechanical loading, and increases IGF-II release, in adult cancellous bone in culture. Calcif Tissue Int 1993; 53: 324–9.

    Article  PubMed  CAS  Google Scholar 

  43. Somjen D, Binderman I, Berger E et al. Bone remodelling induced by physical stress is prostaglandin E2 mediated. Biochim Biophys Acta 1980; 627: 91–100.

    Article  PubMed  CAS  Google Scholar 

  44. Binderman I, Shimshoni Z, Somjen D. Biochemical pathways involved in the translation of physical stimulus into biological message. Calcif Tissue Int 1984; 36: S82–5.

    Article  PubMed  Google Scholar 

  45. Imamura K, Ozawa H, Hiraide T et al. Continuously applied compressive pressure induces bone resorption by a mechanism involving prostaglandin E2 synthesis. J Cell Physiol 1990; 144: 222–8.

    Article  PubMed  CAS  Google Scholar 

  46. Haskin CH, Cameron I. Physiological levels of hydrostatic pressure alter morphology and organization of cytoskeletal and adhesion proteins in MG-63 osteosarcoma cells. Biochem Cell Biol 1993; 71: 27–35.

    Article  PubMed  CAS  Google Scholar 

  47. Haskin CL, Athanasiou KA, Klebe R et al. A heat-shock-like response with cytoskeletal disruption occurs following hydrostatic pressure in MG-63 osteosarcoma cells. Biochem Cell Biol 1993; 71: 361–71.

    Article  PubMed  CAS  Google Scholar 

  48. Bourns B, Franklin S, Cassimeris L et al. High hydrostatic pressure effects in vivo: changes in cell morphology, microtubule assembly and actin organization. Cell Motility Cytoskeleton 1988; 10: 380–90.

    Article  CAS  Google Scholar 

  49. Swezey RR, Somero GN. Pressure effects on actin self assembly: inter-specific differences in the equilibrium and kinetics of the G to F transformation. Biochemistry 1985; 24: 852–60.

    Article  PubMed  CAS  Google Scholar 

  50. Ozawa H, Imamura K, Abe E et al. Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3–E1) in vitro. J Cell Physiol 1990; 142: 177–85.

    Article  PubMed  CAS  Google Scholar 

  51. Wayner EA, Carter WG. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique a and common 13 subunits. J Cell Biol 1987; 105: 1873–84.

    Article  PubMed  CAS  Google Scholar 

  52. Gallatin WM, Wayner EA, Hoffman PA et al. Structural homology between lymphocyte receptors for high endothelium and class II extracellular matrix receptor. Proc Natl Acad Sci USA 1989; 86: 4654–8.

    Article  PubMed  CAS  Google Scholar 

  53. Harell A, Dekel S, Binderman I. Biochemical effect of mechanical stress on cultured bone cells. Calcif Tissue Res 1977; 22 (S): 202–7.

    Article  PubMed  Google Scholar 

  54. Binderman I, Zor U, Kaye AM et al. The transduction of mechanical force into biochemical events in bone cells may involve activation of phospholipase A2. Calcif Tissue Int 1988; 42: 261–6.

    Article  PubMed  CAS  Google Scholar 

  55. Sandy JR, Meghji S, Scutt AM et al. Murine osteoblasts release boneresorbing factors of high and low molecular weights: stimulation by mechanical deformation. Bone Miner 1989; 5: 155–68.

    Article  PubMed  CAS  Google Scholar 

  56. Hasegawa S, Sato S, Saito S et al. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif Tissue Int 1985; 37: 431–6.

    Article  PubMed  CAS  Google Scholar 

  57. Klein-Nulend JK, Semeins CM, Veldhuijzen JP et al. Effect of mechanical stimulation on the production of soluble bone factors in cultured fetal mouse calvariae. Cell Tissue Res 1993; 271: 513–7.

    Article  PubMed  CAS  Google Scholar 

  58. Klein-Nulend J, Veldhuijzen JP, de Jong M et al. Increased bone formation and decreased bone resorption in fetal mouse calvaria as a result of intermittent compressive force in vitro. Bone Miner 1987; 2: 441–8.

    PubMed  CAS  Google Scholar 

  59. Klein-Nulend J, Veldhuijzen JP, van Strien ME et al. Inhibition of osteoclastic bone resorption by mechanical stimulation in vitro. Arthritis Rheum 1990; 33: 66–72.

    Article  PubMed  CAS  Google Scholar 

  60. Yeh C-K, Rodan GA. Tensile forces enhance prostaglandin E synthesis in osteoblastic cells grown on collagen ribbons. Calcif Tissue Int 1984; 36: S67–71.

    Google Scholar 

  61. Harter LV, Hruska KA, Duncan RL. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 1995; 136: 528–35.

    Article  PubMed  CAS  Google Scholar 

  62. Ibaraki K, Whitson JD, Termine SW et al. Bone matrix mRNA expression in differentiating fetal bovine osteoblasts. J Bone Miner Res 1992; 743–54.

    Google Scholar 

  63. Owen TA, Aronow MS, Barone LM et al. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure and bone matrix competency in normal rat osteoblast cultures. Endocrinology 1991; 128: 1496–1504.

    Article  PubMed  CAS  Google Scholar 

  64. Malone JD, Teitelbaum SL, Griffin RM et al. Recruitment of osteoclast precursors by purified bone matrix constituents. J Cell Biol 1982; 92: 227–30.

    Article  PubMed  CAS  Google Scholar 

  65. Buckley MJ, Banes AJ, Levin LG et al. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner 1988; 4: 225–36.

    PubMed  CAS  Google Scholar 

  66. Duncan RL, Hruska KA. Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol 1994; 36: F909–16.

    Google Scholar 

  67. Cowin SC, Moss-Salentjin L, Moss ML. Candidates for the mechanosensory system in bone. Adv Bioengin 1991; 20: 313–6.

    Google Scholar 

  68. Rubin CT, Lanyon LE. Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J Exp Biol 1982; 101: 187–211.

    PubMed  CAS  Google Scholar 

  69. Reich KM, Frangos JA. Effect of flow on prostaglandin E2 and inositol triphosphate levels in osteoblasts. Am J Physiol 1991; 261: C428–32.

    PubMed  CAS  Google Scholar 

  70. Kufahl RH, Saha S. A theoretical model for stress-generated flow in the canaliculi-lacunae network in bone tissue. J Biomech 1990; 23: 171–80.

    Article  PubMed  CAS  Google Scholar 

  71. Reich KM, Frangos JA. Protein kinase C mediates flow-induced prostaglandin E2 production in osteoblasts. Calcif Tissue Int 1993; 52: 62–66.

    Article  PubMed  CAS  Google Scholar 

  72. Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J Cell Physiol 1990; 143: 100–4.

    Article  PubMed  CAS  Google Scholar 

  73. Klein-Nulend J, van der Plas A, Semeins CM et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 1995; 9: 441–5.

    PubMed  CAS  Google Scholar 

  74. Canalis E, Centrella M. Isolation of a nontransforming bone derived growth factor from medium conditioned by fetal rat calvariae. Endocrinology 1986; 118: 2002–8.

    Article  PubMed  CAS  Google Scholar 

  75. Mohan S, Linkhart T, Jennings J et al. Chemical and biological characterization of low molecular weight skeletal growth factor from human bones. Biochim Biophys Acta 1986; 884: 234–42.

    Article  PubMed  CAS  Google Scholar 

  76. Fukada E, Yasuda I. J Phys Soc Jpn 1957; 12: 1158–62.

    Article  Google Scholar 

  77. Anderson JC, Erikson C. Electrical properties of wet collagen. Nature 1968; 218: 166–8.

    Article  PubMed  CAS  Google Scholar 

  78. Gross D, Williams WS. Streaming potential and the electromechanical response of physiologically moist bone. J Biomech 1982; 15: 277–95.

    Article  PubMed  CAS  Google Scholar 

  79. Pollack SR, Salzstein R, Pienkowski D. Streaming potentials in fluid-filled bone. Ferroelectrics 1984; 60: 297–309.

    Article  Google Scholar 

  80. Harrington DB, Meyer R. Effects of small amounts of electric current at the cellular level. Ann NY Acad Sci 1979; 283: 301–6.

    Google Scholar 

  81. Ferrier J, Ross SM, Kanehisa J et al. Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. J Cell Physiol 1986; 129: 283–8.

    Article  PubMed  CAS  Google Scholar 

  82. Brighton CT, McCluskey WP. Cellular response and mechanisms of action of electrically induced osteogenesis. Bone Miner Res 1986; 4: 213–54.

    Google Scholar 

  83. McLeod KJ, Rubin CT. The effect of low-frequency electrical fields on osteogenesis. J Bone Joint Surg 1992; 74A: 920–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gooch, K.J., Tennant, C.J. (1997). Bone Cells. In: Gooch, K.J., Tennant, C.J. (eds) Mechanical Forces: Their Effects on Cells and Tissues. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03420-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03420-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03422-4

  • Online ISBN: 978-3-662-03420-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics