• Tom Andersen
Part of the Ecological Studies book series (ECOLSTUD, volume 129)


Zooplankton Community Microcystis Aeruginosa Chemostat Culture Physiological Ecology Lake Restoration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren G (1977) Growth of Oscillatoria agardhii in chemostat culture. 1. Nitrogen and phosphorus requirements. Oikos 29: 209–224CrossRefGoogle Scholar
  2. Ahlgren G (1978) Growth of Oscillatoria agardhii in chemostat culture. 2. Dependence of growth constants on temperature. Mitt Int Ver Limnol 21: 88–102Google Scholar
  3. Ahlgren G (1985) Growth of Microcystis wesenbergii in batch and chemostat cultures. Verh Int Ver Limnol 22: 2813–2820Google Scholar
  4. Ahlgren G (1987) Temperature functions in biology and their application to algal growth constants. Oikos 49: 177–190CrossRefGoogle Scholar
  5. Aksnes D L Egge J K (1991) A theoretical model for nutrient uptake in phytoplankton. Mar Ecol Prog Ser 70: 65–72CrossRefGoogle Scholar
  6. Allan J D (1976) Life history patterns in zooplankton. Am Nat 110:165–180CrossRefGoogle Scholar
  7. Allan J D Goulden C E (1980) Some aspects of reproductive variation among freshwater zooplankton. Am Soc Limnol Oceanogr Spec Symp 3: 388–411Google Scholar
  8. Andersen O K Goldman J C Caron D A Dennett M R (1986) Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar Ecol Prog Ser 31: 47–55CrossRefGoogle Scholar
  9. Andersen T Hessen D O (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36: 807–814CrossRefGoogle Scholar
  10. Armstrong R A McGehee R (1980) Competitive exclusion. Am Nat 115:151–170CrossRefGoogle Scholar
  11. Arneodo A Coullet P Peyraud J Tresser C (1982) Strange attractors in Volterra equations for species in competition. J Math Biol 14: 153–157PubMedCrossRefGoogle Scholar
  12. Arnold D E (1971) Ingestion, assimilation, survival and reproduction by Daphnia pulex fed seven species of blue-green algae. Limnol Oceanogr 16: 906–921CrossRefGoogle Scholar
  13. Azam F Fenchel T Field J G Gray J S Meyer-Reil L A Thingstad T F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263CrossRefGoogle Scholar
  14. Bader F G (1982) Kinetics of double-substrate limited growth. In: Bazin M (ed) Microbial population dynamics. CRC Press, Boca Raton, pp 1–32Google Scholar
  15. Baines S B Pace M L (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr 36: 1078–1090CrossRefGoogle Scholar
  16. Banse K (1982) Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol Oceanogr 27: 1059–1071CrossRefGoogle Scholar
  17. Banse K (1990) New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea. Deep-Sea Res 37: 1177–1195CrossRefGoogle Scholar
  18. Banta A M (1939) Studies of the physiology, genetics and evolution of some Cladocera. Carnegie Inst Wash Pub 1513: 1–285Google Scholar
  19. Beklemishev C W (1962) Superfluous feeding of marine herbivorous zooplankton. Rapp P V Reun Cons Perm Int Explor Mer 153: 108–113Google Scholar
  20. Benndorf J (1987) Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz Z Hydrol 49: 237–248CrossRefGoogle Scholar
  21. Benndorf J Kneschke H Kossatz K Penz E(1984) Manipulation of the pelagic food web by stocking with predacious fishes. Int Rev Gesamten Hydrobiol 69: 407–428CrossRefGoogle Scholar
  22. Berryman A A Millstein J A (1989) Are ecological systems chaotic — and if not, why not? TREE 4: 26–28PubMedGoogle Scholar
  23. Bird D F Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231: 493–495PubMedCrossRefGoogle Scholar
  24. Bjørnsen P K (1986) Bacterioplankton growth yield in continuous plankton cultures. Mar Ecol Prog Ser 30: 191–196CrossRefGoogle Scholar
  25. Blueweiss L Fox H Kudzma V Nakashima D Peters R H Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37: 257–272CrossRefGoogle Scholar
  26. Bohrer R N Lampert W (1988) Simultaneous measurement of the effect of food concentration on assimilation and respiration in Daphnia magna Straus. Funct Ecol 2: 463–471CrossRefGoogle Scholar
  27. Borgmann U Millard E S Charlton C C (1988) Dynamics of a stable, large volume, laboratory ecosystem containing Daphnia and phytoplankton. J Plankton Res 10: 691–713CrossRefGoogle Scholar
  28. Boström B Jansson M Forsberg C (1982) Phosphorus release from lake sediments. Arch Hydrobiol Beih 18: 5–59Google Scholar
  29. Bottrell H H (1975) Generation time, length of life, instar duration and frequency of molting, and their relationship to temperature in eight species of Cladocera from the River Thames, Reading. Oecologia 19: 129–140CrossRefGoogle Scholar
  30. Brabrand Å Faafeng B Nilssen J P (1990) Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can J Fish Aquat Sci 47: 364–372CrossRefGoogle Scholar
  31. Bratbak G Thingstad T F (1985) Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar Ecol Prog Ser 25: 23–30CrossRefGoogle Scholar
  32. Brekke O (1987) Phosphorus limited growth and phosphate uptake of freshwater algae: Chemostat studies of Rhodomonas lacustris (Cryptophyceae) and competition studies in a eutrophic lake [in norwegian]. Thesis. University of Trondheim, TrondheimGoogle Scholar
  33. Brooks J L Dodson S I (1965) Predation, body size and composition of plankton. Science 150: 28–35PubMedCrossRefGoogle Scholar
  34. Brown E J Button D K (1979) Phosphate limited growth kinetics of Selenastrum capricornutum (Chlorophyceae). J Phycol 15: 305–311CrossRefGoogle Scholar
  35. Brown E J Harris R F Koonce J F (1978) Kinetics of phosphate uptake by aquatic microorganisms: deviations from a simple Michaelis-Menten equation. Limnol Oceanogr 23: 26–34CrossRefGoogle Scholar
  36. Buikema A L (1972) Oxygen consumption of the cladoceran Daphnia pulex, as a function of body size, light, and light acclimation. Comp Biochem Physiol 42: 877–888CrossRefGoogle Scholar
  37. Burmaster D E (1979) The continuous culture of phytoplankton: mathematical equivalence among three unsteady state models. Am Nat 113: 123–134CrossRefGoogle Scholar
  38. Burns C W Rigler F H (1967) Comparison of filtering rates of Daphnia rosea in lake water and in suspensions of yeast. Limnol Oceanogr 12: 492–502.CrossRefGoogle Scholar
  39. Button D K (1978) On the theory of control of microbial growth kinetics by limiting nutrient concentrations. Deep-Sea Res 25: 1163–1177CrossRefGoogle Scholar
  40. Canale R P (1970) An analysis of models describing predator-prey interaction. Biotechnol Bioeng 12: 353–378CrossRefGoogle Scholar
  41. Caperon J Meyer J (1972) Nitrogen-limited growth of marine phytoplankton. I. Changes in population characteristics with steady-state growth rate. Deep-Sea Res 19: 601–618Google Scholar
  42. Carpenter S R Kitchell J F (1984) Plankton community structure and limnetic primary production. Am Nat 124: 159–172CrossRefGoogle Scholar
  43. Cembella A D Antia N J Harrison P J (1984a) The utilization of inorganic and organic phosphorus compounds as nutrients by eucaryotic microalgae: a multidisciplinary perspective: Part 1. CRC Crit Rev Microbiol 10: 317–391CrossRefGoogle Scholar
  44. Cembella A D Antia N J Harrison P J (1984b) The utilization of inorganic and organic phosphorus compounds as nutrients by eucaryotic microalgae: a multidisciplinary perspective: Part 2. CRC Crit Rev Microbiol 11: 13–81CrossRefGoogle Scholar
  45. Checkley D M Jr. (1980) The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol Oceanogr 25: 430–446CrossRefGoogle Scholar
  46. Chen M (1974) Kinetics of phosphorus absorption by Corynebacterium bovis. Microb Ecol 1: 164–175CrossRefGoogle Scholar
  47. Chisholm S W Stross R G (1975) Light/ dark phased cell division in Euglena gracilis in PO4-limited continuous culture. J Phycol 11: 367–373Google Scholar
  48. Cole J J Likens G E Strayer D L (1982) Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol Oceanogr 27: 1080–1090CrossRefGoogle Scholar
  49. Condrey R E Fuller D A (1985) Testing equations of ingestion-limited growth. Arch Hydrobiol Beih (Ergebn Limnol) 21: 257–268Google Scholar
  50. Conover R J (1966) Factors affecting the assimilation of organic matter by zooplankton and the question of superfluous feeding. Limnol Oceanogr 11: 346–354CrossRefGoogle Scholar
  51. Conover R J (1968) Zooplankton — Life in a nutritionally dilute environment. Am Zool 8: 107–118Google Scholar
  52. Cook J R (1963) Adaptation of growth and division in Euglena effected by energy supply. J Protozool 10: 436–444PubMedGoogle Scholar
  53. Corner E D S Davies A G (1971) Plankton as a factor in the nitrogen and phosphorus cycles in the sea. Adv Mar Biol 9: 101–204.CrossRefGoogle Scholar
  54. Currie D J Kalff J (1984) A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol Oceanogr 29: 298–310CrossRefGoogle Scholar
  55. Daniels R E Allan J D (1981) Life table evaluation of chronic exposure to a pesticide. Can J. Fish Aquat Sci 38: 485–494CrossRefGoogle Scholar
  56. Dauta A (1982) Conditions de développement du phytoplancton: étude comparative du comportement de huit espèces en culture. I. Détermination des paramètres de croissance en fonction de la lumière et de la température. Ann Limnol 18: 217–262CrossRefGoogle Scholar
  57. DeAngelis D L (1990) Dynamics of nutrient cycling and food webs. Chapman & Hall, London, 270 ppGoogle Scholar
  58. de Bernardi R Peters R H (1987) Why Daphnia? Mem Ist Ital Idrobiol 45: 1–9Google Scholar
  59. DeMott W R (1982) Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol Oceanogr 27: 518–527CrossRefGoogle Scholar
  60. DeMott W R (1985) Relations between filter mesh-size, feeding mode, and particle capture efficiency for cladocerans feeding on ultrafine particles. Arch Hydrobiol Beih (Ergebn Limnol) 21: 125–134Google Scholar
  61. DeMott W R (1989) The role of competition in zooplankton succession. In: Sommer U (ed) Plankton Ecology. Springer, Berlin, Heidelberg, New York, pp 195–252CrossRefGoogle Scholar
  62. Den Oude P J Gulati R D (1988) Phosphorus and nitrogen excretion rates of zooplankton from the eutrophic Loosdrecht lakes, with notes on other P sources for phytoplankton requirements. Hydrobiologia 169: 379–390CrossRefGoogle Scholar
  63. De Stasio B T Jr (1989) The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70: 1377–1389CrossRefGoogle Scholar
  64. Dijkstra E W (1976) A discipline of programming. Prentice-Hall, Englewood Cliffs, N. J., 217 PPGoogle Scholar
  65. Droop M R (1968) Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc UK 48: 689–733CrossRefGoogle Scholar
  66. Droop M R (1974) The nutrient status of algal cells in continuous culture. J Mar Biol Assoc UK 55: 825–855CrossRefGoogle Scholar
  67. Droop M R (1983) 25 years of algal growth kinetics. A personal view. Bot Mar 26: 99–112CrossRefGoogle Scholar
  68. Dugdale R C (1967) Nutrient limitation in the sea: dynamics, identification and significance. Limnol Oceanogr 12: 685–695CrossRefGoogle Scholar
  69. Dunstan W W Tenore W T (1974) Control of species composition in enriched mass cultures of natural phytoplankton populations. J Appl Ecol 11: 529–536CrossRefGoogle Scholar
  70. Durbin E G Durbin A G Smayda T J Verity P J (1983) Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnol Oceanogr 28: 1199–1213CrossRefGoogle Scholar
  71. Edmondson W T Lehman J T (1981) The effects of changes in the nutrient income on the condition of Lake Washington. Limnol Oceanogr 26: 1–29CrossRefGoogle Scholar
  72. Elendt B-P (1989) Effects of starvation on growth, reproduction, survival and biochemical composition of Daphnia magna. Arch Hydrobiol 116: 415–433Google Scholar
  73. Elrifi I R Turpin D H (1985) Steady-state luxury consumption and the concept of optimum nutrient ratios: a study with phosphate and nitrate limited Selenastrum minutum (Chlorophyta). J Phycol 21: 592–602CrossRefGoogle Scholar
  74. Elser J J Elser M M MacKay N A Carpenter S R (1988) Zooplankton-mediated transitions between N- and P-limited algal growth. Limnol Oceanogr 33: 1–14CrossRefGoogle Scholar
  75. Elstad C A (1986) Population dynamics and nutrient fluxes in an aquatic microcosm. Hydrobiologia 137: 223–237CrossRefGoogle Scholar
  76. Eppley R W Sloan P R (1966) Growth rates of marine phytoplankton: correlation with light absorption by cell chlorophyll a. Physiol Plant 19: 47–59CrossRefGoogle Scholar
  77. Faafeng B Brettum P Hessen D O (1990) National survey of trophy status of 355 Norwegian lakes [in Norwegian]. Norwegian Institute for Water Research. (Overvåkingsrapport nr 389/90)Google Scholar
  78. Falkowski P G Dubinsky Z Wyman K (1985) Growth-irradiance relationships in phytoplankton. Limnol Oceanogr 30: 311–321CrossRefGoogle Scholar
  79. Fogg G E (1966) The extracellular products of algae. Oceanogr Mar Biol Annu Rev 4: 195–212Google Scholar
  80. Frank P W (1952) A laboratory study of intraspecies and interspecies competition in Daphnia pulicaria (Forbes) and Simocephalus vetulus C. F. Müller. Physiol Zool 25: 178–204Google Scholar
  81. Frank P W Boll C D Kelly R W (1957) Vital statistics of laboratory cultures of Daphnia pulex De Geer as related to density. Physiol Zool 30: 287–305Google Scholar
  82. Frauenthal J C (1986) Analysis of age-structure models. In: Hallam T G Levin S A (eds) Mathematical ecology. Springer, Berlin, Heidelberg, New York, pp 117–147CrossRefGoogle Scholar
  83. Freedman H I Wolkowicz G S K (1986) Predator-prey systems with group defence: the paradox of enrichment revisited. Bull Math Biol 48: 493–508PubMedGoogle Scholar
  84. Fuchs G W Demmerle S D Canelli E Chen M (1972) Characterization of phosphorus-limited plankton algae. Am Soc Limnol Oceanogr Spec Symp 1: 113–133Google Scholar
  85. Furnas M J (1990) In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J Plankton Res 12: 1117–1151CrossRefGoogle Scholar
  86. Ganf G G Shiel R J (1985) Particle capture by Daphnia carinata. Aust J Mar Freshwater Res 36: 371–381CrossRefGoogle Scholar
  87. Gard T C Hallam T G (1979) Persistence in food webs: I. Lotka-Volterra food chains. Bull Math Biol 41: 877–891Google Scholar
  88. Geider R J (1987) Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106: 1–34CrossRefGoogle Scholar
  89. Geider R J Osborne B A Raven J A (1985) Light effects on growth and photosynthesis of Phaeodactylum tricornutum. J Phycol 21: 609–619CrossRefGoogle Scholar
  90. Geller W (1975) Die Nahrungsaufnahme von Daphnia pulex in Abhängigkeit von der Futterkonzentration, der Temperatur, der Körpergrösse und dem Hungerzustand der Tiere. Arch Hydrobiol Beih 48: 47–107Google Scholar
  91. Gerritsen J Strickler J R (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Board Can 34: 73–82CrossRefGoogle Scholar
  92. Giloin M E (1972) Enriched predator-prey systems: theoretical stability. Science 177: 902–904CrossRefGoogle Scholar
  93. Gilpin M E (1979) Spiral chaos in a predator-prey model. Am Nat 113: 306–308CrossRefGoogle Scholar
  94. Glazier D S (1991) Separating the respiration rates of embryos and brooding females of Daphnia magna: implications for the cost of brooding and the allometry of metabolic rate. Limnol Oceanogr 36: 354–362CrossRefGoogle Scholar
  95. Gliwicz Z M (1986) Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748CrossRefGoogle Scholar
  96. Gliwicz Z M (1990) Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201: 83–97CrossRefGoogle Scholar
  97. Gliwicz Z M Lampert W (1990) Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71: 691–702CrossRefGoogle Scholar
  98. Gliwicz Z M Pijanowska J (1989) The role of predation in zooplankton succession. In: Sommer U (ed) Plankton Ecology. Springer, Berlin, Heidelberg, New York, pp 253–296CrossRefGoogle Scholar
  99. Goldman J C McCarthy J J (1978) Steady state growth and ammonium uptake of a fastgrowing marine diatom. Limnol Oceanogr 23: 695–703CrossRefGoogle Scholar
  100. Goldman J C McCarthy J J Peavey D G (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215CrossRefGoogle Scholar
  101. Gons H J (1977) On the light-limited growth of Scenedesmus protuberans Fritsch. PhD Thesis. University of Amsterdam, AmsterdamGoogle Scholar
  102. Gons H J Barug D Goossens H Loogman J G (1978) Growth of Scenedesmus protuberans Fritsch in phosphorus-limited continuous cultures. Verh Int Ver Limnol 20: 2308–2313Google Scholar
  103. Goss L B Bunting D L (1980) Temperature effects on zooplankton respiration. Comp Biochem Physiol 66A: 651–658CrossRefGoogle Scholar
  104. Gotham I J Rhee G-Y (1981) Comparative kinetics study of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture. J Phycol 17: 257–265CrossRefGoogle Scholar
  105. Goulden C E Hornig L Wilson C (1978) Why do large zooplankton species dominate? Verh Int Ver Limnol 20: 2457–2460Google Scholar
  106. Goulden C E Henry L L Tessier A J (1982) Body size, energy reserves, and competitive ability in three species of Cladocera. Ecology 63: 1780–1789CrossRefGoogle Scholar
  107. Goulden C E Henry L Strickler J R (1984) Lipid energy reserves and their role in cladocera.In: Meyers D W Strickler J R (eds) Trophic interactions within aquatic ecosystems. Westview Press, Boulder, pp 167–185Google Scholar
  108. Grassberger P (1990) An optimized box-assisted algorithm for fractal dimensions. Phys Lett A 148: 63–68CrossRefGoogle Scholar
  109. Green J (1956) Growth, size, and reproduction in Daphnia (Crustacea: Cladocera). Proc Zool Soc Lond 126: 173–204Google Scholar
  110. Grillo J F Gibson J (1979) Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus. J Bacteriol 140: 508–517PubMedGoogle Scholar
  111. Grover J P (1989a) Phosphorus-dependent growth kinetics of 11 species of fresh-water algae. Limnol Oceanogr 34: 349–356CrossRefGoogle Scholar
  112. Grover J P (1989b) Influence of cell shape and size on algal competitive ability. J Phycol 25: 402–405CrossRefGoogle Scholar
  113. Guckenheimer J Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  114. Giide H (1985) Influence of phagotrophic processes on the regeneration of nutrients in twostage continuous culture systems. Microb Eco 111: 193–204CrossRefGoogle Scholar
  115. Gulati R D Lammers E H R R Meijer M-L van Donk E (eds) (1990) Biomanipulation — tool for water management. Kluwer, Dordrecht, 628 pp.Google Scholar
  116. Gurney W S C McCauley E Nisbet R M Murdoch W W (1990) The physiological ecology of Daphnia: a dynamic model of growth and reproduction. Ecology 71: 716–732CrossRefGoogle Scholar
  117. Hahn G J Meeker W Q (1982) Pitfalls and practical considerations in product life analysis Part I: Basic concepts and dangers of extrapolation. J Qual Technol 14: 144–152Google Scholar
  118. Hairer E Nørsett S P Wanner G (1987) Solving ordinary differential equations. I. Nonstiff problems. Springer, Berlin, Heidelberg, New York, 480 ppGoogle Scholar
  119. Hairston N C Smith F E Slobodkin L B (1960) Community structure, population control, and competition. Am Nat 94: 421–425CrossRefGoogle Scholar
  120. Hall D J (1964) An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45: 94–112CrossRefGoogle Scholar
  121. Hall D J Cooper W E Werner E E (1970) An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol Oceanogr 15: 839–928CrossRefGoogle Scholar
  122. Hall D J Threlkeld S T Burns C W Crowley P H (1976) The size-efficiency hypothesis and the size structure of zooplankton communities. Annu Rev Ecol Syst 7: 177–208CrossRefGoogle Scholar
  123. Hanson J M Peters R H (1984) Empirical prediction of zooplankton and profundal macrobenthos biomass in lakes. Can J Fish Aquat Sci 41:439–455CrossRefGoogle Scholar
  124. Hardin G (1960) The competitive exclusion principle. Science 131: 1292–1298PubMedCrossRefGoogle Scholar
  125. Harris G P (1986) Phytoplankton ecology. Structure, function and fluctuation. Chapman & Hall, London, 384 ppCrossRefGoogle Scholar
  126. Harrison P J Davies C O (1979) The use of outdoor phytoplankton continuous cultures to analyze factors influencing species succession. J Exp Mar Biol Ecol 41: 9–23CrossRefGoogle Scholar
  127. Healey F P (1985) Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae). J Phycol 21: 134–146CrossRefGoogle Scholar
  128. Healey F P Hendzel L L (1975) Effects of phosphorus defiency of two algae growing in chemostats. J Phycol 11: 303–309Google Scholar
  129. Healey F P Hendzel L L (1979) Indicators of phosphorus and nitrogen deficiency in five algae in culture. J Fish Res Board Can 36: 1364–1369CrossRefGoogle Scholar
  130. Healey F P Hendzel L L (1988) Competition for phosphorus between desmids. J Phycol 24: 287–292CrossRefGoogle Scholar
  131. Heaney S I Butterwick C (1985) Comparative mechanisms of algal movement in relation to phytoplankton production. In: Rankin M A (ed) Migration: Mechanisms and adaptive significance. University of Texas Press, Austin, pp 114–134Google Scholar
  132. Heaney S I Sommer U (1984) Changes of algal biomass as carbon, cell number and volume, in bottles suspended in Lake Constance. J Plankton Res 6: 239–247CrossRefGoogle Scholar
  133. Hebert P D N (1982) Competition in zooplankton communities. Ann Zool Fenn 19: 349–356Google Scholar
  134. Hessen D O (1985a) The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microb Ecol 31: 215–223CrossRefGoogle Scholar
  135. Hessen D O (1985b) Filtering structures and particle size selection in coexisting cladocera. Oecologia 66: 368–372CrossRefGoogle Scholar
  136. Hessen D O (1992) Nutrient element limitation of zooplankton production. Am Nat 104: 799–814CrossRefGoogle Scholar
  137. Hessen D O Andersen T (1990) Bacteria as a source of phosphorus for zooplankton. Hydrobiologia 206: 217–223CrossRefGoogle Scholar
  138. Hessen D O Andersen T (1992) The algae-grazer interface: feedback mechanisms linked to elemental ratios and nutrient cycling. Arch Hydrobiol Beih (Ergebn Limnol) 35: 111–120Google Scholar
  139. Hessen D O Lyche A (1991) Inter- and intraspecific variations in zooplankton elemental composition. Arch Hydrobiol 121: 343–353Google Scholar
  140. Hessen D O Andersen T Lyche A (1989) Differential grazing and resource utilization of zooplankton in a humic lake. Arch Hydrobiol 114: 321–347Google Scholar
  141. Hessen D O Andersen T Lyche A (1990) Carbon metabolism in a humic lake; pool sizes and cycling through zooplankton. Limnol Oceanogr 35: 84–99CrossRefGoogle Scholar
  142. Hessen D O Faafeng B Andersen T (1992) Zooplankton contribution to particulate phosphorus and nitrogen in lakes. J Plankton Res 14: 937–947CrossRefGoogle Scholar
  143. Hogeweg P Hesper B (1978) Interactive instruction in population interactions. Comput Biol Med 8: 319–327PubMedCrossRefGoogle Scholar
  144. Holing C S (1966) The functional response of invertebrate predators to prey density. Mem Entomol Soc Can 48: 1–86CrossRefGoogle Scholar
  145. Holm N A Armstrong D E (1981) Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol Oceanogr 26: 622–634CrossRefGoogle Scholar
  146. Hrbácek J Dvórákova M Korínek V Procházkóva L (1961) Demonstration of the effect of fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh Int Ver Limnol 14: 192–195Google Scholar
  147. Hsu S B Hubbell S P Waltman P (1977) A mathematical theory for single-nutrient competition in continous cultures of microorganisms. SIAM J Appl Math 32: 366–383CrossRefGoogle Scholar
  148. Hutchinson G E (1961) The paradox of the plankton. Am Nat 95: 137–145CrossRefGoogle Scholar
  149. Hutchinson G E (1967) A treatise on limnology. vol. II. Wiley, New YorkGoogle Scholar
  150. Hutchinson G E (1973) Eutrophication. The scientific background of a contemporary practical problem. Am Sci 61: 269–279Google Scholar
  151. Infante A Litt A H (1985) Differences between two species of Daphnia in the use of 10 species of algae in Lake Washington. Limnol Oceanogr 30: 1053–1059CrossRefGoogle Scholar
  152. Ingle L Wood T R Banta A M (1937) A study of longevity, growth, reproduction and heart rate in Daphnia longispina as influenced by limitations in quantity of food. J Exp Zoo 176: 325–352CrossRefGoogle Scholar
  153. Jacobs J (1974) Quantitative measurement of food selection. Oecologia 14: 413–417CrossRefGoogle Scholar
  154. Jacoby J M Lynch D D Welch E B Perkins M A (1982) Internal phosphorus loading in a shallow eutrophic lake. Water Res 16: 911–919CrossRefGoogle Scholar
  155. Jassby A D Goldman C R (1974) Loss rates from a lake phytoplankton community. Limnol Oceanogr 19: 618–627CrossRefGoogle Scholar
  156. Jensen A (1984) Excretion of organic carbon as function of nutrient stress. In: Holm-Hansen O Bolis L Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin; Heidelberg, New York, pp 61–72CrossRefGoogle Scholar
  157. Jeppesen E Søndergaard M Mortensen E Kristensen P Riemann B Jensen H J Miiller J P Sortkjær O Jensen J P Christoffersen K Bosselmann S Dall E (1990) Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia 200/201: 205–218CrossRefGoogle Scholar
  158. Kalif J Knoechel R (1978) Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Annu Rev Ecol Syst 9: 475–495CrossRefGoogle Scholar
  159. Kappers F I (1984) On population dynamics of the cyanobacterium Microcystis aeruginosa. PhD Thesis. University of Amsterdam, AmsterdamGoogle Scholar
  160. Kerfoot W C Sih A (eds) (1987) Predation, direct and indirect impacts on aquatic communities. University Press of New England, HanoverGoogle Scholar
  161. Kersting K (1983) Direct determination of the “threshold food concentration” for Daphnia magna. Arch Hydrobiol 96: 510–514Google Scholar
  162. Kieber D J McDaniel J Mopper K (1989) Photochemical source of biological substrates in sea water: implications for carbon cycling. Nature 341: 637–639CrossRefGoogle Scholar
  163. Kilham P Hecky R E (1988) Comparative ecology of marine and freshwater phytoplankton. Limnol Oceanogr 33: 776–795CrossRefGoogle Scholar
  164. Kilham P Kilham S S (1980) The evolutionary ecology of phytoplankton. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell, Oxford, pp 571–592Google Scholar
  165. Kilham S S (1987) Phytoplankton responses to changes in mortality rates. Verh Int Ver Limnol 23: 677–682Google Scholar
  166. Kilham S S Kott C L Tilman D (1977) Phosphate and silicate kinetics for the Lake Michigan diatom Diatoma elongatum. J Great Lakes Res 3: 93–99CrossRefGoogle Scholar
  167. Knisely K Geller W (1986) Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86–94CrossRefGoogle Scholar
  168. Kohl J-G Nicklisch A (1988) Ökophysiologie der Algen. Gustav Fischer, Stuttgart, 253 ppGoogle Scholar
  169. Kooijman S A L M(1986) Population dynamics on the basis of budgets. In: Metz J A J Diekman O (eds) The dynamics of physiologically structured populations. Springer, Berlin, Heidelberg, New York, pp 266–297Google Scholar
  170. Kring L R O’Brien W J (1976) Effect of varying oxygen concentration on the filtring rate of Daphnia pulez. Ecology 57: 808–814CrossRefGoogle Scholar
  171. Lampert W (1976) A directly coupled artificial two-step food chain for long term experiments with filter feeders at constant food concentrations. Mar Biol 37: 349–355CrossRefGoogle Scholar
  172. Lampert W (1977) Studies on the carbon balance of Daphnia pulex de Geer as related to environmental conditions. I — IV. Arch Hydrobiol Beih 48: 287–368Google Scholar
  173. Lampert W (1978) Release of dissolved organic carbon by grazing zooplankton. Limnol Oceanogr 23: 831–834CrossRefGoogle Scholar
  174. Lampert W (1987) Feeding and nutrition in Daphnia. Mem Ist Ital Idrobiol 45: 143–192Google Scholar
  175. Lampert W Bohrer R(1984) Effect of food availability on the respiratory quotient of Daphnia magna. Comp Biochem Physiol 78a: 221–224CrossRefGoogle Scholar
  176. Lampert W Gabriel W (1984) Tracer kinetics in Daphnia: an improved two-compartment model and experimental test. Arch Hydrobiol 100: 1–20Google Scholar
  177. Lampert W Muck P (1985) Multiple aspects of food limitation in zooplankton communities: the Daphnia-Eudiaptomus example. Arch Hydrobiol Beih 21: 311–322Google Scholar
  178. Lampert W Schober U (1980) The importance of “threshold” food concentrations. Am Soc Limnol Oceanogr Spec Symp 3: 264–267Google Scholar
  179. Lampert W Fleckner W Rai H Taylor B E (1986) Phytoplankton control by grazing zooplankton: A study on the spring clear water phase. Limnol Oceanogr 31: 478–490CrossRefGoogle Scholar
  180. Langeland A Reinertsen H (1982) Interactions between phytoplankton and zooplankton in a fertilized lake. Holarct Ecol 5: 253–272Google Scholar
  181. Lawless J F (1982) Statistical models and methods for lifetime data. Wiley, New YorkGoogle Scholar
  182. Laws E A Bannister T T (1980) Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the oceans. Limnol Oceanogr 25: 457–473CrossRefGoogle Scholar
  183. Laws E A Redalje D G Karl D M Chalup M S (1983) A theoretical and experimental examination of the predictions of two recent models of phytoplankton growth. J Theor Biol 105: 469–491CrossRefGoogle Scholar
  184. Laws E A Jones D R Terry K L Hirata J A (1985) Modifications in recent models of phytoplankton growth: theoretical developments and experimental examination of predictions. J Theor Biol 114: 323–341CrossRefGoogle Scholar
  185. Lean D R S (1976) Movements of phosphorus between its biologically important forms in lake water. J Fish Res Board Can 33: 1525–1536CrossRefGoogle Scholar
  186. Lean D R S Nalewajko C (1976) Phosphate exchange and organic phosphorus excretion by freshwater algae. J Fish Res Board Can 33: 1312–1323CrossRefGoogle Scholar
  187. Le Borgne R (1982) Zooplankton production in the eastern tropical Atlantic Ocean: net growth efficiency and P:B in terms of carbon, nitrogen and phosphorus. Limnol Oceanogr 27: 681–698CrossRefGoogle Scholar
  188. Lee G F Rast W Jones R A (1978) Eutrophication of water bodies: insights for an age-old problem. Environ Sci Technol 12: 900–908CrossRefGoogle Scholar
  189. Lehman J T (1976) The filter-feeder as an optimal forager, and the predicted shapes of feeding curves. Limnol Oceanogr 21: 501–516CrossRefGoogle Scholar
  190. Lehman J T (1984) Grazing, nutrient release, and their impacts on the structure of phytoplankton communities. In: Meyers D W Strickler J R (eds) Trophic interactions within aquatic ecosystems. Westview Press, Boulder, pp 49–72Google Scholar
  191. Lehman J T (1988) Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments. Limnol Oceanogr 33: 931–945CrossRefGoogle Scholar
  192. Lehman J T Naumoski T (1985) Content and turnover of phosphorus in Daphnia pulex: Effect of food quality. Hydrobiologia 128: 119–125CrossRefGoogle Scholar
  193. Leon J A Thumpson D B (1975) Competition between two species for two complementary or substitutable resources. J Theor Biol. 50: 185–201PubMedCrossRefGoogle Scholar
  194. Levin S A (1970) Community equilibria and stability, and an extension of the competitive exclusion principle. Am Nat 104: 413–423CrossRefGoogle Scholar
  195. Levins R (1979) Coexistence in a variable environment. Am Nat 114: 765–783CrossRefGoogle Scholar
  196. Lindeman R L (1942) The trophic-dynamic aspect of ecology. Ecology 23: 399–418CrossRefGoogle Scholar
  197. Lotka A J (1907) Relation between birth rates and death rates. Science 26: 21–22PubMedCrossRefGoogle Scholar
  198. Lotka A J (1925) Elements of physical biology. Dover Publications, New YorkGoogle Scholar
  199. Løvstad O Wold T (1984) Determination of external concentrations of available phosphorus for phytoplankton populations. Verh Int Ver Limnol 22: 205–210Google Scholar
  200. Luenberger D G (1979) Introduction to dynamic systems. Theory, models and applications. Wiley, New York, 446 ppGoogle Scholar
  201. Lynch M (1977) Fitness and optimal body size in zooplankton populations. Ecology 58: 763–774CrossRefGoogle Scholar
  202. Lynch M (1980a) The evolution of cladoceran life histories. Q Rev Biol 55: 23–41CrossRefGoogle Scholar
  203. Lynch M (1980b) Aphanizomenon blooms: alternate control and cultivation by Daphnia pulex. Am Soc Limnol Oceanogr Spec Symp 3: 299–304Google Scholar
  204. Lynch M (1983) Estimation of size-specific mortality rates in zooplankton populations by periodic sampling. Limnol Oceanogr 28: 533–545CrossRefGoogle Scholar
  205. Lynch M (1989) The life history consequences of resource depression in Daphnia pulex. Ecology 70: 246–256CrossRefGoogle Scholar
  206. Lynch M Ennis R (1983) Resource availability, maternal effects, and longevity. Exp Gerontol 18: 147–165PubMedCrossRefGoogle Scholar
  207. Lynch M Weider L J Lampert W (1986) Measurement of the carbon balance in Daphnia. Limnol Oceanogr 31: 17–33CrossRefGoogle Scholar
  208. MacArthur R H Wilson E O (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  209. MacDonald N (1978) Time lags in biological models. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  210. Mackereth F J(1953) Phosphorus utilization by Asterionella formosa. J Exp Bot 4: 296–313CrossRefGoogle Scholar
  211. Malone T C (1980) Algal size.In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford, pp 433–463Google Scholar
  212. Mangel M Clark C W (1988) Dynamic modeling in behavioral ecology. Princeton University Press, Princeton, 308 ppGoogle Scholar
  213. May R M (1972) Limit cycles in predator-prey communities. Science 177: 900–902PubMedCrossRefGoogle Scholar
  214. May R M (1975) Stability and complexity in model ecosystems. Princeton University Press, PrincetonGoogle Scholar
  215. May R M (1981) Models for two interacting populations. In: May R M (ed) Theoretical ecology. Principles and applications. Saunders, Philadelphia, pp 78–104Google Scholar
  216. Mazumder A McQueen D J Taylor W D Lean D R S (1988) Effects of fertilization and planktovorous fish (yellow perch) predation on size-distribution of particulate phosphorus and assimilated phosphate: large enclosure experiments. Limnol Oceanogr 33: 421–430CrossRefGoogle Scholar
  217. Mazumder A Taylor W D McQueen D J Lean D R S (1989) Effects of fertilization and planktirous fish on epilimnetic phosphorus and phosphorus sedimentation in large enclosures. Can J Fish Aquat Sci 46: 1735–1742CrossRefGoogle Scholar
  218. Mazumder A McQueen D J Taylor W D Lean D R S (1990) Pelagic food web interactions and hypolimnetic oxygen depletion: Results from experimental enclosures and lakes. Aquat Sci 52: 144–155CrossRefGoogle Scholar
  219. Mazumder A Taylor W D Lean D R S McQueen D J (1992) Partitioning and fluxes of phosphorus: mechanisms regulating the size-distribution and biomass of plankton. Arch Hydrobiol Beih (Ergebn Limnol) 35: 121–143Google Scholar
  220. McAllister C D LeBrasseur R J Parsons T R (1972) Stability of enriched aquatic ecosystems. Science 175: 562–564PubMedCrossRefGoogle Scholar
  221. McCauley E Kalff J (1981) Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can J Fish Aquat Sci 38: 458–463CrossRefGoogle Scholar
  222. McCauley E Murdoch W W (1987) Cyclic and stable populations: plankton as a paradigm. Am Nat 129: 97–121CrossRefGoogle Scholar
  223. McCauley E Murdoch W W (1989) Predator-prey dynamics in environments rich and poor in nutrients. Nature 343: 455–457CrossRefGoogle Scholar
  224. McCauley E Murdoch W W Nisbet R M Gurney W S (1990) The physiological ecology of Daphnia: development of a model of growth and reproduction. Ecology 71: 703–715CrossRefGoogle Scholar
  225. McMahon J W(1965) Some physical factors influencing the feeding behaviour of Daphnia magna Straus. Can J Zoo 143: 603–612CrossRefGoogle Scholar
  226. McMahon J W Rigler F H (1965) Feeding rate of Daphnia magna Straus in different foods labeled with radioactive phosphorus. Limnol Oceanogr 10: 105–113CrossRefGoogle Scholar
  227. McQueen D J Post J R Mills E L (1986) Trophic relationships in freshwater pelagic ecosystems. Can J Fish Aquat Sci 43: 1571–1581CrossRefGoogle Scholar
  228. McQueen D J Johannes M R S Post J R Stewart T J Lean D R S (1989) Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol Monogr 59: 289–309CrossRefGoogle Scholar
  229. Menge B A Sutherland J P (1976) Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. Am Nat 110: 351–368CrossRefGoogle Scholar
  230. Menge B A Sutherland J P (1987) Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am Nat 130: 730CrossRefGoogle Scholar
  231. Metz J A J Diekman O(eds) (1986) The dynamics of physiologically structured populations. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  232. Meusy J J (1980) Vitellogenin, the extraovarian precursor of the protein yolk in Crustacea: a review. Reprod Nutr Dev 83: 1–21.Google Scholar
  233. Mickelson M J Maske H Dugdale R C (1979) Nutrient-dependent dominance in multispecies chemostat cultures of diatoms. Limnol Oceanogr 24: 298–315CrossRefGoogle Scholar
  234. Møller-Andersen J (1975) Influence of pH on release of phosphorus from lake sediments. Arch Hydrobiol 76: 411–419Google Scholar
  235. Morel F M M (1987) Kinetics of nutrient uptake and growth in phytoplankton. J Phycol 23: 137–150Google Scholar
  236. Morgan K C (1976) Studies on the autecology of the freshwater algal flagellate Cryptomonas erosa. PhD Thesis. McGill University, MontrealGoogle Scholar
  237. Mortimer C H (1941) The exchange of dissolved substances between mud and water in lakes. I. J Ecol 29: 280–329CrossRefGoogle Scholar
  238. Mortimer C H (1942) The exchange of dissolved substances between mud and water in lakes. II. J Ecol 30: 147–201CrossRefGoogle Scholar
  239. Muck P Lampert W (1980) Feeding of freshwater filter-feeders at very low food concentrations: poor evidence for “threshold feeding” and “optimal foraging” in Daphnia longispina and Eudiaptomus gracilis. J Plankton Res 2: 367–379CrossRefGoogle Scholar
  240. Muck P Lampert W (1984) An experimental study on the importance of food conditions for the relative abundance of calanoid copepods and cladocerans. 1. Comparative feeding studies with Eudiaptomus gracilis and Daphnia longispina. Arch Hydrobiol Beih 66: 157–179Google Scholar
  241. Miiller V H (1972) Wachstum und Phosphatbedarf von Nitzschia actinastroides (Lem.) v. Goor in statischer und homocontinuierlicher Kultur unter Phosphatlimitierung. Arch Hydrobiol Beih 38: 399–484Google Scholar
  242. Murdoch W W (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol Monogr 39: 335–354CrossRefGoogle Scholar
  243. Murdoch W W McCauley E (1985) Three distinct types of dynamic behaviour shown by a single planktonic system. Nature 316: 628–630CrossRefGoogle Scholar
  244. Myers J Graham J-R (1971) The photosynthetic unit in Chlorella measured by repetitive short flashes. Plant Physiol 48: 282–286PubMedCrossRefGoogle Scholar
  245. Myklestad S (1977) Production of carbohydrates by marine planktonic diatoms. II. Influence of the N/P ratio in growth medium on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. Willei (Gran) Hustedt and Skeletonema costatum (Grev.) Cleve. J Exp Mar Biol Ecol 29: 161–179CrossRefGoogle Scholar
  246. Nakashima B S Leggett W C (1980) Natural sources and requirements of phosphorus in fishes. Can J Fish Aquat Sci 37: 679–686CrossRefGoogle Scholar
  247. Nauwerck A (1963) Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb Bot Ups 17: 1–163Google Scholar
  248. Nielsen M Olsen Y (1989) The dependence of the assimilation efficiency in Daphnia magna on the 14C-labeling period of the food alga Scenedesmus acutus. Limnol Oceanogr 34: 1311–1315CrossRefGoogle Scholar
  249. Nisbet R M Gurney W S C (1982) Modelling fluctuating populations. Wiley, New York, 377 ppGoogle Scholar
  250. Nisbet R M Gurney W S C Murdoch W WMcCauley E (1989) Structured population models: a tool for linking effects at individual and population level. Biol J Linn Soc 37: 79–99CrossRefGoogle Scholar
  251. Nyholm N (1977) Kinetics of phosphate limited algal growth. Biotechnol Bioeng 19: 467–492PubMedCrossRefGoogle Scholar
  252. Odum E P (1962) Relationships between structure and function in the ecosystem. Jpn J Ecol 12: 108–118Google Scholar
  253. Odum E P de la Cruz A A (1963) Detritus as a major component of ecosystems. Bull Am Inst Biol Sci 13: 39–40Google Scholar
  254. Odum H T (1957) Trophic structure and productivity of Silver Springs, Florida. Ecol Monogr 27: 55–112CrossRefGoogle Scholar
  255. Oglesby R T (1977) Phytoplankton summer standing crops and annual productivity as functions of phosphorus loading and various physical factors. J Fish Res Board Can 34: 2255–2270CrossRefGoogle Scholar
  256. Oksanen L Fretwell S D Arruda J Niemela P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118: 240–261CrossRefGoogle Scholar
  257. Olsen Y (1988) Phosphate kinetics and competitive ability of planktonic blooming cyanobacteria under variable phosphate supply. Dr. Techn. Thesis. University of Trondheim, TrondheimGoogle Scholar
  258. Olsen Y (1989) Evaluation of competitive ability of Staurastrum luetkemuellerii (Chlorophyceae) and Microcystis aeruginosa (Cyanophyceae) under P limitation. J Phycol 25: 486–499CrossRefGoogle Scholar
  259. Olsen Y Østgaard K (1985) Estimating release rates of phosphorus from zooplankton; model and experimental verification. Limnol Oceanogr 30: 844–852CrossRefGoogle Scholar
  260. Olsen Y Knutsen G Lien T (1983a) Characteristics of phosphorus limitation in Chlamydomonas reinhardtii (Chlorophyceae) and its palmelloids. J Phycol 19: 313–319CrossRefGoogle Scholar
  261. Olsen Y Jensen A Reinertsen H Rugstad B (1983b) Comparison of different algal carbon estimates by use of the Droop-model for nutrient limited growth. J Plankton Res 5: 43–51CrossRefGoogle Scholar
  262. Olsen Y Vårum K M Jensen A (1986a) Some characteristics of the carbon compounds released by Daphnia. J Plankton Res 8: 505–517CrossRefGoogle Scholar
  263. Olsen Y Jensen A Reinertsen H Børsheim K Y Heldal M Langeland A (1986b) Dependence of the rate of release of phosphorus by zooplankton upon the P:C ratio in the food supply, as calculated from the recycling-model. Limnol Oceanogr 31: 34–44CrossRefGoogle Scholar
  264. Olsen Y Vadstein O Andersen T Jensen A (1989) Competition between Staurastrum luetkemuellerii (Chlorophyceae) and Microcystis aeruginosa (Cyanophyceae) under varying modes of phosphate supply. J Phycol 25: 499–508CrossRefGoogle Scholar
  265. Paasche E (1980) Silicon. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell, Oxford, pp 258–284Google Scholar
  266. Pace M L (1984) Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Can J Fish Aquat Sci 41: 1089–1096CrossRefGoogle Scholar
  267. Pace M L Porter K G Feig Y S (1983) Species- and age-specific differences in bacterial resource utilization by two co-occurrring cladocerans. Ecology 64: 1145–1156CrossRefGoogle Scholar
  268. Paloheimo J E Crabtree S J Taylor W D (1982) Growth model of Daphnia. Can J Fish Aquat Sci 39: 598–606CrossRefGoogle Scholar
  269. Parker R A Olson M I (1966) The uptake of inorganic phosphate by Daphnia schoedleri. Physiol Zool 39: 53–65Google Scholar
  270. Pennak R W (1957) Species composition of limnetic zooplankton communities. Limnol Oceanogr 2: 222–232Google Scholar
  271. Perrin N (1989) Reproductive allocation and size constraints in the cladoceran Simocephalus vetulus (Müller). Funct Ecol 3: 279–283CrossRefGoogle Scholar
  272. Perry M J (1976) Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the central North Pacific. Limnol Oceanogr 21: 88–107CrossRefGoogle Scholar
  273. Peters R H (1983) Ecological implications of body size. Cambridge University Press, Cambridge, New york, 329 ppCrossRefGoogle Scholar
  274. Peters R H (1987) Metabolism in Daphnia. Mem Ist Ital Idrobiol 45: 193–243Google Scholar
  275. Peters R H Rigler F H (1973) Phosphorus release by Daphnia. Limnol Oceanogr 18: 821–839CrossRefGoogle Scholar
  276. Pianka E R (1970) On r- and K-selection. Am Nat 104: 592–597CrossRefGoogle Scholar
  277. Piyasiri S (1985) Methodological aspects of defining food dependence and food thresholds in fresh-water calanoids. Arch Hydrobiol Beih. (Ergebn Limnol) 21: 277–284Google Scholar
  278. Pollard J H (1973) Mathematical models for the growth of human populations. Cambridge University Press, Cambridge, New yorkGoogle Scholar
  279. Porter K G (1988) Phagotrophic protozoa in planktonic food webs. Hydrobiologia 159: 89–97CrossRefGoogle Scholar
  280. Porter K G Gerritsen J Orcutt J D (1982) The effect of food concentration on swimming patterns, feeding behaviour, ingestion, assimilation, and respiration by Daphnia. Limnol Oceanogr 27: 935–949CrossRefGoogle Scholar
  281. Porter K G Orcutt J D Gerritsen J (1983) Functional response and fitness in a generalist filter feeder, Daphnia magna (cladocera: crustacea). Ecology 64: 735–742CrossRefGoogle Scholar
  282. Powell T Richerson P J (1985) Temporal variation, spatial heterogeneity, and competition for resources in plankton systems: a theoretical model. Am Nat 125: 431–463CrossRefGoogle Scholar
  283. Prairie Y T (1988) A test of the sedimentation assumptions of phosphorus input-output models. Arch Hydrobiol 111: 321–327Google Scholar
  284. Prairie Y T (1989) Statistical models for the estimation of net phosphorus sedimentation in lakes. Aquat Sci 51: 192–210CrossRefGoogle Scholar
  285. Press W H Flannery B P Teukolsky S A Vetterling W T (1986) Numerical recipes. The art of scientific computing. Cambridge University Press, Cambridge, 818 ppGoogle Scholar
  286. Reckhow K H Chapra S C (1983) Engineering approaches for lake management, vol 1: Data analysis and empirical modeling. Butterworth, LondonGoogle Scholar
  287. Redfield A C (1958) The biological control of chemical factors in the environment. Am Sci 46: 205–222Google Scholar
  288. Reiners W A (1986) Complementary models for ecosystems. Am Nat 127: 59–73CrossRefGoogle Scholar
  289. Reinertsen H Jensen A Koksvik J I Langeland A Olsen Y (1989) Effects of fish removal on the limnetic ecosystem of a eutrophic lake. Can J Fish Aquat Sci 47: 166–173CrossRefGoogle Scholar
  290. Reynolds C S (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 ppGoogle Scholar
  291. Reynolds C S (1989) Physical determinants of phytoplankton succession. In: Sommer U (ed) Plankton Ecology. Springer, Berlin, Heidelberg, New York, pp 9–58CrossRefGoogle Scholar
  292. Rhee G-Y (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J phycol 9: 495–506Google Scholar
  293. Rhee G-Y Gotham I J (1980) Optimum N:P ratios and coexistence of planktonic algae. J Phycol 16: 468–489CrossRefGoogle Scholar
  294. Rhee G-Y Gotham I J (1981) The effect of environmental factors on phytoplankton growth: light and the interaction of light with nitrate limitation. Limnol Oceanogr 26: 649–660CrossRefGoogle Scholar
  295. Richman S (1958) The transformation of energy by Daphnia pulex. Ecol Monogr 28: 273–291CrossRefGoogle Scholar
  296. Richman S Dodson S I (1983) The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnol Oceanogr 28: 948–956CrossRefGoogle Scholar
  297. Ricker W E (1973) Linear regressions in fishery research. J Fish Res Board Can 30: 409–434CrossRefGoogle Scholar
  298. Riegman R Mur L R (1984) Regulation of phosphate uptake kinetics in Oscillatoria agardhii. Arch Microbiol 139: 28–32CrossRefGoogle Scholar
  299. Riemann B Søndergaard M (eds) (1986) Carbon dynamics in eutrophic, temperate lakes. Elsevier, AmsterdamGoogle Scholar
  300. Rigler F H (1961) The relation between concentration of food and feeding rate of Daphnia magna Straus. Can J Zool 39: 857–868CrossRefGoogle Scholar
  301. Rigler F H (1964) The phosphorus fractions and turnover time of inorganic phosphorus in different types of lakes. Limnol Oceanogr 9: 511–514CrossRefGoogle Scholar
  302. Rodhe W (1978) Algae in culture and nature. Verh Int Ver Limnol 21: 7–20Google Scholar
  303. Rogers T D (1981) Chaos in systems in population biology. Prog Theor Bio 16: 92–146Google Scholar
  304. Rognerud S Kjellberg G (1984) Relationships between phytoplankton and zooplankton biomasses in large lakes. Verh Int Ver Limnol 22: 666–671Google Scholar
  305. Rosenzweig M L (1969) Why the prey curve has a hump. Am Nat 103: 81–87CrossRefGoogle Scholar
  306. Rosenzweig M L (1971) Paradox of enrichment Destabilization of exploitation ecosystems in ecological time. Science 171: 385–387PubMedCrossRefGoogle Scholar
  307. Rosenzweig M L MacArthur R H (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97: 209–223CrossRefGoogle Scholar
  308. Roughgarden J (1979) Theory of population genetics and evolutionary ecology: an introduction. Macmillan, New York. 634 ppGoogle Scholar
  309. Sakamoto M (1966) Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch Hydrobiol 62: 1–28Google Scholar
  310. Sakshaug E Andresen K Myklestad S Olsen Y (1983) Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition. J Plankton Res 5: 175–196CrossRefGoogle Scholar
  311. Sanni S Wærvågen S B (1990) Oligotrophication as a result of planktivorous fish removal with rotenone in the small, eutrophic lake, Mosvatn, Norway. Hydrobiologia 200/201: 263–274CrossRefGoogle Scholar
  312. Scavia D McFarland M J (1982) Phosphorus release patterns and the effects of reproductive stage and ecdysis in Daphnia magna. Can J Fish Aquat Sci 39: 1310–1314CrossRefGoogle Scholar
  313. Schaffer W M Kot M (1986) Chaos in ecological systems: the coals that Newcastle forgot. TREE 1: 58–63PubMedGoogle Scholar
  314. Schindler D W(1977) Evolution of phosphorus limitation in lakes. Science 195: 260–262PubMedCrossRefGoogle Scholar
  315. Schindler D W (1978) Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnol Oceanogr 23: 478–486CrossRefGoogle Scholar
  316. Shapiro J (1980) The importance of trophic level interactions to the abundance and species composition of algae in lakes. Dev Hydrobiol 2: 105–116Google Scholar
  317. Shapiro J Wright D I (1984) Lake restoration by biomanipulation:Round Lake, Minnesota, the first two years. Freshwater Biol 14: 371–383CrossRefGoogle Scholar
  318. Shapiro J Lamarra V Lynch M (1975) Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik P L Fox J L (eds) Proceedings of a symposium on water quality management through biological control. University of Florida Press, Gainesville, pp 85–96Google Scholar
  319. Sharp J H (1977) Excretion of organic matter by marine phytoplankton. Do healthy cells do it? Limnol Oceanogr 22: 381–399CrossRefGoogle Scholar
  320. Shuter B J (1978) Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. Limnol Oceanogr 23: 1248–1255CrossRefGoogle Scholar
  321. Shuter B (1979) A model of physiological adaption in unicellular algae. J Theor Biol 78: 519–552PubMedCrossRefGoogle Scholar
  322. Sinko J W Streifer W (1967) A new model for age-size structure of a population. Ecology 48: 910–918CrossRefGoogle Scholar
  323. Slagstad D (1981) Modeling and simulation of physiology and population dynamics of copepods. Effects of physical and biological parameters. Model Identif Control 2: 119–162CrossRefGoogle Scholar
  324. Slagstad D (1982) A model of phytoplankton growth — effects of vertical mixing and adaptation to light. Model Identif Control 3: 111–130CrossRefGoogle Scholar
  325. Smith F E (1963) Population dynamics in Daphnia magna and a new model for population growth. Ecology 44: 651–663CrossRefGoogle Scholar
  326. Smith R E H Kalff J (1982) Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J Phycol 18: 275–284CrossRefGoogle Scholar
  327. Smith R E Kalff J (1983) Competition for phosphorus among co-occurring freshwater phytoplankton. Limnol Oceanogr 28: 448–464CrossRefGoogle Scholar
  328. Smith R E Kalff J (1985) Phosphorus competition among phytoplankton: A reply. Limnol Oceanogr 30: 440–444CrossRefGoogle Scholar
  329. Smith V H (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671PubMedCrossRefGoogle Scholar
  330. Sommer U (1981) The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecol 2: 327–342Google Scholar
  331. Sommer U (1983) Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch Hydrobiol 96: 399–416Google Scholar
  332. Sommer U (1984) The paradox of the plankton: fluctuations of the phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol Oceanogr 29: 633–636CrossRefGoogle Scholar
  333. Sommer U (1985) Comparison between steady state and nonsteady state competition: experiments with natural phytoplankton. Limnol Oceanogr 30: 335–346CrossRefGoogle Scholar
  334. Sommer U (1986) Phytoplankton competition along a gradient of dilution rates. Oecologia 68: 503–506CrossRefGoogle Scholar
  335. Sommer U (1988a) Does nutrient competition among phytoplankton occur in situ? Verh Int Ver Limnol 23: 707–712Google Scholar
  336. Sommer U (1988b) Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnol Oceanogr 33: 1037–1054CrossRefGoogle Scholar
  337. Sommer U (1989a) Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnol Oceanogr 34: 1162–1173CrossRefGoogle Scholar
  338. Sommer U (ed) (1989b) Plankton ecology. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  339. Sommer U Kilham S S (1985) Phytoplankton natural community competition experiments: a reinterpretation. Limnol Oceanogr 30: 436–440CrossRefGoogle Scholar
  340. Sommer U Gliwicz Z M Lampert W Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433–471Google Scholar
  341. Souza-Machado S Rollins R Jacobs D Hartman J (1990) Studying chaotic systems using microcomputers and Lyapunov exponents. Am J Phys 58: 321–329CrossRefGoogle Scholar
  342. Steemann Nielsen E (1979) Growth of the unicellular alga Selenastrum capricornutum as a function of P. With some information also on N. Verh Int Ver Limnol 20: 36–42Google Scholar
  343. Stemberger R S Gilbert J J (1985) Body size, food concentration, and population growth in planktonic rotifers. Ecology 66: 1151–1159CrossRefGoogle Scholar
  344. Stemberger R S Gilbert J J (1987) Rotifer threshold food concentrations and the size-efficiency hypothesis. Ecology 68: 181–187CrossRefGoogle Scholar
  345. Stenson J A E Bohlin T Henrikson L Nilsson B I Nyman H G Oscarson H G Larsson P (1978) Effects of fish removal from a small lake. Verh Int Ver Limnol 20: 794–801Google Scholar
  346. Sterner R W (1989) The role of grazers in phytoplankton succession. In: Sommer U (ed) Plankton ecology. Springer, Berlin, Heidelberg, New York, pp 107–170CrossRefGoogle Scholar
  347. Sterner R W (1990) The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am Nat 136: 209–229CrossRefGoogle Scholar
  348. Sterner R W Hagemeier D D Smith W L Smith R F (1993) Phytoplankton nutrient limitation and food quality for Daphnia. Limnol Oceanogr 38: 857–871CrossRefGoogle Scholar
  349. Stross R G (1987) Photoperiodism and phased growth in Daphnia populations: coactions in perspective. Mem Ist Ital Idrobiol 45: 413–437Google Scholar
  350. Suttle C A (1987) Effects of nutrient patchiness and N:P supply ratios on the ecology and physiology of freshwater phytoplankton. PhD Thesis, University British Columbia, VancouverGoogle Scholar
  351. Taylor B E (1985) Effects of food limitation on growth and reproduction of Daphnia. Arch Hydrobiol Beih 21: 285–296Google Scholar
  352. Taylor W D Lean D R S (1991) Phosphorus pool sizes and fluxes in the epilimnion of a mesotrophic lake. Can J Fish Aquat Sci 48: 1293–1301CrossRefGoogle Scholar
  353. Tessier A J Goulden C E (1982) Estimating food limitation in cladoceran populations. Limnol Oceanogr 27: 707–717CrossRefGoogle Scholar
  354. Tessier A J Goulden C E (1987) Cladoceran juvenile growth. Limnol Oceanogr 32: 680–686CrossRefGoogle Scholar
  355. Tessier A J Henry L L Goulden C E Durand M W (1983) Starvation in Daphnia: energy reserves and reproductive allocation. Limnol Oceanogr 28: 667–676CrossRefGoogle Scholar
  356. Thingstad T F (1987) Analyzing the “microbial loop”. PhD Thesis. University of Bergen, BergenGoogle Scholar
  357. Thompson J M Ferguson A J D Reynolds C S (1982) Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J Plankton Res 4: 545–560CrossRefGoogle Scholar
  358. Thompson J M T Stewart H B (1986) Nonlinear dynamics and chaos. Wiley, New York, 376 ppGoogle Scholar
  359. Threlkeld S T (1987) Daphnia population fluctuation: patterns and mechanism. Mem Ist Ital Idrobiol 45: 367–388Google Scholar
  360. Thurman E M (1985) Organic geochemistry of natural waters. Dr W Junk, The HagueCrossRefGoogle Scholar
  361. Tillmann U Lampert W (1984) Competitive ability of differently sized Daphnia species: an experimental test. J Freshwater Ecol 2: 311–323CrossRefGoogle Scholar
  362. Tilman D (1980) Resources: a graphical-mechanistic approach to competition and predation. Am Nat 116: 362–393CrossRefGoogle Scholar
  363. Tilman D (1981) Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62: 802–815CrossRefGoogle Scholar
  364. Tilman D (1982) Resource competition and community structure. Princeton University Press, PrincetonGoogle Scholar
  365. Tilman D Kilham S S (1976b) Phosphate and silicate growth and uptake of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuos culture. J Phycol 12: 375–383Google Scholar
  366. Titman D Kilham P (1976b) Sinking in fresh water phytoplankton: some ecological implications of cell nutrient status and physical mixing processes. Limnol Oceanogr 21: 409–417CrossRefGoogle Scholar
  367. Tilman D Kilham S S Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13: 349–372CrossRefGoogle Scholar
  368. Tufillaro N B Abbott T Reilly J (1992) An experimental approach to nonlinear dynamics and chaos. Addison-Wesley, Redwood City, 340 pp.Google Scholar
  369. Turner J T Ferrante J G (1979) Zooplankton fecal pellets in aquatic ecosystems. Bioscience 29: 670–677CrossRefGoogle Scholar
  370. Turpin D H (1988) Physiological mechanisms in phytoplankton resource competition. In: Sandgren C D (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 316–368Google Scholar
  371. Uehlinger U (1980) Experimentelle Untersuchungen zur Autökologie von Aphanizomenon flos-aquae. Arch Hydrobiol Beih 60: 260–288Google Scholar
  372. Vadstein O Olsen Y (1989) Chemical composition and phosphate uptake kinetics of limnetic bacterial communities cultured in chemostat under phosphorus limitation. Limnol Oceanogr 34: 939–946CrossRefGoogle Scholar
  373. Vadstein O Jensen A Olsen Y Reinertsen H (1988) Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol Oceanogr 33: 489–503CrossRefGoogle Scholar
  374. Van Donk E Gulati R D Grimm M P (1989) Food-web manipulation in Lake Zwemlust: positive and negative effects during the first two years. Hydrobiol Bull 23: 19–35CrossRefGoogle Scholar
  375. Vance R R (1978) Predation and resource partitioning in one predator-two prey model communities. Am Nat 112: 797–813CrossRefGoogle Scholar
  376. Vanderploeg H A Scavia D (1979) Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecol Model 7: 135–149CrossRefGoogle Scholar
  377. Vanderploeg H A Scavia D Liebig J R (1984) Feeding rate of Diaptomus sicilis and its relation to selectivity and effective food concentration in algal mixtures and in Lake Michigan. J Plankton Res 6: 919–941CrossRefGoogle Scholar
  378. Van Liere L (1979) On Oscillatoria agardhii Gomont: experimental ecology and physiology of a nuisance bloom-forming cyanobacterium. PhD Thesis. University of Amsterdam, AmsterdamGoogle Scholar
  379. Vanni M J Temte J (1990) Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol Oceanogr 35: 697–709CrossRefGoogle Scholar
  380. Vidal J (1980) Physioecology of zooplankton. 1. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Mar Biol 56: 111–134CrossRefGoogle Scholar
  381. Vollenweider R A (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD, ParisGoogle Scholar
  382. Vollenweider R A (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33: 53–83Google Scholar
  383. Volterra V (1926) Variations and fluctuations of the number of individuals in animal species living together. J Cons Perm Int Ent Mer 3: 3–51Google Scholar
  384. Walsby A E Reynolds C S (1980) Sinking and floating. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford, pp 371–412Google Scholar
  385. Wetzel R G (1975) Limnology. Saunders, Philadelphia, 743 ppGoogle Scholar
  386. Wetzel R G Rich Ph Miller C H Allen H L (1972) Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Mem Ist Ital Idrobiol 29: 185–243Google Scholar
  387. Williamson C E Gilbert J J (1980) Variation among zooplankton predators: The potential of Asplanchna, Mesocyclops, and Cyclops to attack, capture, and eat various rotifer prey. Am Soc Limnol Oceanogr Spec Symp 3: 509–517Google Scholar
  388. Williamson C E Butler N M Forcina L (1985) Food limitation in naupliar and adult Diaptomus pallidus. Limnol Oceanogr 30: 1283–1290CrossRefGoogle Scholar
  389. Winner R W Farrell M P (1976) Acute and chronic toxicity of copper to four species of Daphnia. J Fish Res Board Can 33: 1685–1691CrossRefGoogle Scholar
  390. Wright D I Shapiro J (1984) Nutrient reduction by biomanipulation: an unexpected phenomenon and its possible cause. Verh Int Ver Limnol 22: 518–524Google Scholar
  391. Yan N D (1986) Empirical prediction of crustacean zooplankton biomass in nutrient-poor Canadian shield lakes. Can J Fish Aquat Sci 43: 788–796CrossRefGoogle Scholar
  392. Yan N D Mackie G L Boomer D (1989) Seasonal patterns in metal levels of the net plankton of three canadian shield lakes. Sci Total Environ 87/88: 439–461CrossRefGoogle Scholar
  393. Zaffagnini F (1987) Reproduction in Daphnia. Mem Ist Ital Idrobiol 45: 245–284Google Scholar
  394. Zaret T M (1980) Predation and freshwater communities. Yale University Press, New HavenGoogle Scholar
  395. Zeuthen E (1953) Oxygen uptake as related to body size in organisms. Q Rev Biol 28: 1–12PubMedCrossRefGoogle Scholar
  396. Zevenboom W Mur L R (1980) N2-fixing cyanobacteria: why they do not become dominant in Dutch hypertrophic lakes? In: Barica J Mur L R (eds) Hypertrophic ecosystems. Dr W Junk, The Hague, pp 123–130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Tom Andersen
    • 1
  1. 1.Department of BiologyUniversity of OsloOsloNorway

Personalised recommendations