Data Processing

  • Eric Durieux
  • Luca Fiorani
Part of the Transport and Chemical Transformation of Pollutants in the Troposphere book series (3373, volume 8)


The methodology of lidar measurements for tropospheric ozone concentrations has been discussed in Chapter 2 of this report, and a presentation of the instrumental setups developed within the frame of the TESLAS subproject has followed. Here the data processing procedures will be discussed.


Ozone Concentration Atmospheric Research Instrument Development Range Cell Lidar Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Klett; Stable analytical inversion solution for processing lidar returns, Appl. Opt. 20 (1981) 211.CrossRefGoogle Scholar
  2. 2.
    L.T. Molina, et al.; Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range, J. Geophys. Res. 91 (1986) 14501.CrossRefGoogle Scholar
  3. 3.
    D.R. Lide (ed.), Handbook of Chemistry and Physics, CRC Press, 1992.Google Scholar
  4. 4.
    L. Elterman; UV, Visible, and IR attenuation for altitudes to 50 km, AFCRL-68–0153 (1968).Google Scholar
  5. 5.
    P.M. Teillet; Rayleigh optical depth comparisons from various sources, Appl. Opt. 29 (1990) 1897.Google Scholar
  6. 6.
    M.W.P. Cann, et al.; Oxygen absorption in the spectral range 180 – 300 nm for temperatures to 3000 K and pressures to 50 atm, Can. J. Phys. 62 (1984) 1738.Google Scholar
  7. 7.
    A.M. Bass, et al.; Extinction coefficients of NO2 and N2O4, J. Res. Nat. Bur. Stand. 80A (1976) 143.CrossRefGoogle Scholar
  8. 8.
    D.J. Brassington; Sulfur dioxide absorption cross-section measurements from 290 nm to 317 nm, Appl. Opt. 20 (1981) 3774.CrossRefGoogle Scholar
  9. 9.
    C. Weitkamp, et al.; Sulfur dioxide absorption cross-section between 265 and 298 nanometers, GKSS 91 /E/ 16 (1991).Google Scholar
  10. 10.
    S.L. Manatt, A.L. Lane; A compilation of the absorption cross sections of SO2 from 106 to 403 nm, J. Quant. Spectrosc. Radiat. Transfer 50 (1993) 267.CrossRefGoogle Scholar
  11. 11.
    E.V. Browell, S. Ismail, S.T. Shipley; Ultraviolet DIAL measurements of 03 profiles in regions of spatially inhomogeneous aerosols, Appl. Opt. 24 (1985) 2827.CrossRefGoogle Scholar
  12. 12.
    R.M. Measures; Laser Remote Sensing, Krieger Publishing Company, 1992.Google Scholar
  13. 13.
    Y. Sasano, E.V. Browell, S. Ismail; Error caused by using a constant extinction / backscattering ratioin the lidar solution, Appl. Opt. 24 (1985) 3929–3932.CrossRefGoogle Scholar
  14. 14.
    Yu.E. Voskoboinikov, A.A. Mitsel’; The use of smoothing splines for restoration of the H2O absorption molecular coefficient profile, Izv. Akad. Nauk, Fiz. Atmos. Okeana 17 (1981) 175.Google Scholar
  15. 15.
    V.E. Zuev, Yu.S. Makushkin, V.N. Marichev, A.A. Mitsel’, V.V. Zuev; Lidar differential absorption and scattering technique: Theory, Appl. Opt. 22 (1983) 3733.CrossRefGoogle Scholar
  16. 16.
    A.V. El’nikov, V.V. Zuev, M.Yu. Kataev, V.N. Marichev, A.A. Mitsel’; Sounding of stratospheric ozone with an UV bifrequency DIAL: Methods for solving the inverse problem and results of the field experiment, Atmos. Oceanic Opt. 5 (1992) 362.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Eric Durieux
    • 1
  • Luca Fiorani
    • 1
  1. 1.EPFL-LIDAR GroupLausanneSwitzerland

Personalised recommendations