Skip to main content

Abstract

The chemistry of the atmosphere is significantly influenced by exchange processes between the biosphere and the atmosphere (Warneck 1988; Schlesinger 1991; Sharkey et al. 1991; Butcher et al. 1992; Graedel and Crutzen 1993, 1994). A number of trace gases, which can dramatically affect atmospheric chemistry, are not only released from but also adsorbed and consumed by the biosphere. Within this context we examine plant physiological and soil microbial processes, potentially influenced by environmental factors such as temperature, humidity, light and trace gas composition of the surrounding air. In contrast to adsorption/desorption processes of trace gases produced by soils and only mediated by the plant tissue (i.e. methane) it is obvious that volatile components have to be produced prior to the emission. Thus we need to understand why these compounds are produced: interactions, special functions, unimportant by-products or accumulations due to blocking metabolic pathways. In all cases the status of the soil and plant or the soil-plant system and external factors have a significant influence on emissions. These are the crucial points in addition to stress, senescence and seasonal effects. Furthermore, the measurement techniques used for plant or micro-organism studies influence the exchange behaviour sometimes dramatically. Another important factor without direct involvement of plant metabolism is the influence of leaf surface micro-organisms, the epiphytes. All plant surfaces are more or less colonised by bacteria, fungi, yeasts or algae which form an ecosystem of their own, called the phyllosphere (Blakeman 1981; Fokkema and van den Heuvel 1986; Andrews and Hirano 1991). Information about their influence on trace gas exchange is lacking. However, as the epiphytes have their own metabolism, including the exchange of metabolites with their environment, an interaction with the surrounding air has to be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, J.H., S.S. Hirano (eds), (1991). Microbial Ecology of Leaves. Springer Verlag, New York.

    Google Scholar 

  • Arey, J., Winer, A.M., Atkinson, R., Aschmann, S.M., Long, W.D., Morrison, C.L. (1991) The emission of (Z)-3-hexen-l-ol, (Z)-3-Hexenylacetate and other oxygenated hydrocarbons from agricultural plant species. Atmos. Environ. 25, 1063–1075.

    Article  Google Scholar 

  • Badger, M.R., Price, G.D. (1990) Carbon oxysulfide is an inhibitor of both CO2 and HCO3 uptake in the cyanobacterium Synechococcus PCC7942. Plant Physiol. 94, 35–39.

    Article  Google Scholar 

  • Baker, E.A., (1982). Chemistry and Morphology of plant epicuticular waxes. in: Cutler, D.F., K.L. Alvin and C.E: Price (eds), The Plant Cuticle. Academic Press, 139-165.

    Google Scholar 

  • Ball, J.T. (1987) Calculations related to gas exchange. In: Zeiger, E., Farquhar, G.D., Cowan, I.R. (eds), Stomatal function. Stanford University Press, Stanford California, pp.445–467.

    Google Scholar 

  • Bieder, U., Schatz, A. (1993). The deposition of air pollutants to wet vegetation. in: P.M. Borrell, P. Borrell, T. Cvitaš, W. Seiler (eds), Proc. EUROTRAC Symp.’ 92, SPB Academic Publishing bv, The Hague 1993, pp. 714–717.

    Google Scholar 

  • Blakeman, J. (ed.), (1981). Microbial Ecology. Academic Press, London.

    Google Scholar 

  • Baumgärtner, M., (1991). Umsetzung von Stickoxiden (NOx) in Böden, auf Gebäudeoberflächen und in Mikroorganismen. Konstanzer Dissertationen Nr. 327. Hartung-Gorre Verlag, Konstanz.

    Google Scholar 

  • Baumgärtner, M. and R. Conrad, (1992). Effects of soil variables and season on the production and consumption of nitric oxide in oxic soils. Biol. Fertil. Soils, 14, 166–174.

    Article  Google Scholar 

  • Bode, K. (1994) Die Abgabe von organischen Säuren an die Atmosphäre durch Pflanzen verschiedener Entwicklungsstufen. Dissertation, Fachbereich Biologie, Universität Mainz.

    Google Scholar 

  • Boland, W., Z. Feng, J. Donath, A. Gabler, (1992). Are Acyclic C11 and C16 Homoterpenes Plant Volatiles Indicating Herbivory? Naturwissenschaften, 79, 368–371.

    Article  Google Scholar 

  • Breiding, H., Gravenhorst, G. (1990) Der NH3-Transfer zwischen Atmosphäre und Nadelbäumen. In: Ammoniak in der Umwelt (Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL) und Verein Deutscher Ingenieure (VDI), eds) KTBL-Schriften Vertrieb im Landwirtschaftsverlag GmbH, Münster, Germany

    Google Scholar 

  • Brons, H. J., W. R. Hagen, A. J. B. Zehnder, (1991). Ferrous iron dependent nitric oxide production in nitrate reducing cultures of Escherichia coli. Arch. Microbiol., 155, 341–347.

    Article  Google Scholar 

  • Butcher, S.S., Charlson, R.J., Orians, G.H., Wolfe, G.V. (1992) Global Biogeochemical Cycles. Academic Press, Inc., San Diego, USA.

    Google Scholar 

  • Castro, M.S., Galloway, J.N. (1991) A comparison of sulfur-free and ambient air enclosure techniques for measuring the exchange of reduced sulfur gases between soils and the atmosphere. J. Geophys. Res. 96, 15, 247–15, 437.

    Google Scholar 

  • Chalk, P. M. and Smith, C.J. (1983). Chemodenitrification. Dev. Plant Soil Sci., 9, 65–89.

    Google Scholar 

  • Chin, M., Davis, D.D. (1993) Global sources and sinks of OCS and CS2 and their distributions. Global Biogeochemical Cycles 7, 321–33.

    Article  Google Scholar 

  • Conrad, R., (1994). Compensation concentration as critical variable for regulating the flux of trace gases between soil and atmosphere. Biogeochem., 27, 155–170.

    Article  Google Scholar 

  • Conrad, R., (1995a). Soil microbial processes and the cycling of atmospheric trace gases. Phil Trans. R. Soc. London A, 351, 219–230.

    Article  Google Scholar 

  • Conrad, R., (1995b). Metabolism of nitric oxide in soil and soil microorganisms and regulation of flux into the atmosphere. in: J.C. Murrell and D.P. Kelly (eds), The Microbiology of Atmospheric Trace Gases; Sources, Sinks and Global Change Processes. NATO ASI Series. Springer, in press.

    Google Scholar 

  • Conrad, R., (1995c). Soil microbial processes involved in production and consumption of atmospheric trace gases. Adv. Microb. Ecol., in press.

    Google Scholar 

  • Conrad, R., W. Seiler, (1985). Characteristics of abiological CO formation from soil organic matter, humic acids, and phenolic compounds. Environ. Sci. Technol., 19, 1165–1169.

    Article  Google Scholar 

  • Cosgrove, DJ., Cleland, R.E. (1983). Solutes in the free space of growing tissues. Plant Physiol, 72, 326–331.

    Article  Google Scholar 

  • Cramer, M.D. and Lewis, O.A.M. (1993). The influence of nitrate and ammonium nutrition on the growth of wheat (Triticum aestivum) and maize (Zea mays) plants. Ann. Bot., 72, 359–365.

    Article  Google Scholar 

  • Davidson, E. A., (1991). Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. in: J. E. Rogers, W. B. Whitman (eds), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, American Society for Microbiology, Washington D.C., pp. 219–235.

    Google Scholar 

  • Davidson, E. A., (1992) Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci. Soc. Am. J. 56, 95–102.

    Article  Google Scholar 

  • Demello, W.Z., Hines, M.E. (1994) Application of static and dynamic enclosures for determining Dimethyl Sulfide and Carbonyl Sulfide exchange in Sphagnum peatlands — Implications for the magnitude and direction of flux. J. Geophys. Res. 99, 14601–14607.

    Article  Google Scholar 

  • Denmead, O.T., Freney, J.R., Simpson, J.R. (1976) A closed ammonia cycle within a plant canopy. Soil Biol Biochem. 8, 161–164.

    Article  Google Scholar 

  • Duyzer, J.H., Bouman, A.M.H., Diederen, H.S.M.A., Aalst, R.M. van (1987) Measurement of dry deposition velocities of NH3 and NH4+ over natural terrains. Report R87/273, MT-TNO Delft, The Netherlands.

    Google Scholar 

  • Duyzer, J.H., Verhagen, H.L.M., Westtrate, J.H., Bosveld, F.C., Vermetten, A.W.M. (1994). The dry deposition of ammonia onto a douglas fir forest in the Netherlands. Atmos. Environ. A28, 1241–1253.

    Article  Google Scholar 

  • Elstner, E.F. (1982). Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol., 33, 73–96

    Article  Google Scholar 

  • Ennos, R.A., K.W. Swales, (1988). Genetic variation in tolerance of host monoterpenes in a population of the ascomycete canker pathogen Crumenolopsis sororia. Plant Pathol. 37, 407–16.

    Article  Google Scholar 

  • Erisman, J.W., Wyers, G.P. (1993). Continuous measurements of surface exchange of SO2 and NH3; implications for their possible interaction in the deposition process. Atmos. Environ. 27A: 1937–1949.

    Google Scholar 

  • Erisman, J.W., Versluis, A.H., Verplanke, T.A.J.W., de Haan, D., Anink, D., van Elzakker, B.G., Mermen, M.G., Aalst, R.M. van (1993a). Monitoring the dry deposition of SO2 in the Netherlands. Atmos. Environ. 27, 1153–1161.

    Article  Google Scholar 

  • Farquhar, G.D., Firth, P.M., Wetselaar, R., Weir, B. (1980) On the gaseous exchange of ammonia between leaves and the environment: Determination of ammonia compensation point. Plant Physiol. 66, 710–714.

    Article  Google Scholar 

  • Fokkema, N. J., J. van den Heuvel (eds), (1986). Micobiology of the Phyllosphere. Cambrige University Press, Cambridge.

    Google Scholar 

  • Fowler, D. (1985. Dry deposition of SO2 onto plant canopies. in: Winner, W.E., Mooney H.A., Goldstein R.A. (eds), Sulphur dioxide and vegetation, Stanford University Press, California, pp. 75–95.

    Google Scholar 

  • Fowler, D., Unsworth, M.H. (1979). Turbulent transfer of sulfur dioxide to a wheat crop. Quart. J. Roy. Met. Soc. 105, 767–783.

    Article  Google Scholar 

  • Garland, J.A., Branson, J.R. (1977). The deposition of sulphur dioxide to pine forest assessed by a radioactive tracer method. Tellus 29, 445–454.

    Article  Google Scholar 

  • Graedel, T.E., Crutzen, P.J. (1993) Atmospheric Change: An Earth System Perspective. W.H. Freemann and Co., New York, USA.

    Google Scholar 

  • Graedel, T.E., Crutzen, P.J. (1994) Chemie der Atmoshäre: Bedeutung ür Klima und Umwelt. Spektrum Akademischer Verlag GmbH, Heidelberg, Germany.

    Google Scholar 

  • Grignon, C, Sentenac, H. (1991) pH and Ionic Conditions in the Apoplast. Annu. Rev. Plant Physiol. Plant. Mol. Biol.. 42, 103–128.

    Article  Google Scholar 

  • Harper, L. A., Giddens, J. E., Langdale, G. W. (1989). Environmental effects on nitrogen dynamics in soybean under conservation and clean tillage systems. Agronomy. J. 81, 623–631.

    Article  Google Scholar 

  • Harper, L.A., Sharpe, R.R., Langdale, G.W. and Giddens, J.E. (1987) Nitrogen cycling in a wheat crop: Soil, plant and aerial nitrogen transport. Agronomy. J. 79, 965–973.

    Article  Google Scholar 

  • Hoffmann, B., Plönker, R., Mengel, K. (1992). Measurement of pH in the apoplast of sunflower leaves by means of fluorescence. Physiologia Plantarum, 84, 146–153.

    Article  Google Scholar 

  • Holloway, P.J. (1982). The chemical constitution of plant cutins in: Cutler, D.F., Alvin, K.L. and Price, C.E. (eds), The Plant Cuticle. Academic Press, 45-85.

    Google Scholar 

  • Hopke, J., J. Donath, S. Blechert, W. Boland, (1994). Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a-glucosidase andjasmonic acid. FEBS Letters, 352, 146–150.

    Article  Google Scholar 

  • Hove, L.W.A. van, Adema, E.H., Vredenberg, W.J., Pieters, G.A. (1989) A study of the adsorption of NH3 and SO2 on leaf surfaces. Atmos. Environ. A, 23, 1479–1486.

    Google Scholar 

  • Husted, S., Schjørring, J.K. (1995) Apoplastic pH and ammonium concentration in leaves of Brassica napus L., Plant Physiol. submitted.

    Google Scholar 

  • Juuti, S., J. Arey, R. Atkinson, (1990). Monoterpene emission rate measuremts from a Monterey pine, J. Geophys. Res. 95 D, 7515–7519.

    Article  Google Scholar 

  • Kauss, H., (1991), Phosphorprotein-controlled changes in ion transport are common events in signal transduction for callose and phytoalexin induction, in: Hennecke, H. and D.P.S. Verma (eds),Advances in Molecular Genetics of Plant-Microbe Interations, 1, 428–31.

    Google Scholar 

  • Kauss, H., W. Jeblick, J. Ziegler, W. Krabler, (1994). Pretreatment of Parsley (Petrosilenum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species. Plant Physiol., 105, 89–104.

    Google Scholar 

  • KesselmeierJ., Hofmann, U., Protoschill-Krebs, G., Hofmann, R., Merk, L., Bartell, U., Velmecke, F., Andreae.M.O. (1992) Exchange of reduced sulfur compounds between atmosphere and biosphere. EUROTRAC Annual Report 1991, Part 4, B1ATEX, EUROTRAC ISS, Garmisch-Partenkirchen pp. 202-208.

    Google Scholar 

  • Kesselmeier, J., Merk, L. (1993) Exchange of Carbonyl Sulfide (COS) between Agricultural Plants and the Atmosphere: Studies on the Deposition of COS to Peas, Corn and Rapeseed. Biogeochemistry 23, 47–59.

    Google Scholar 

  • Kesselmeier, J., Merk, L., Bliefernicht, M., Helas, G. (1993). Trace gas exchange between terrestrial plants and atmosphere: carbon dioxide, carbonyl sulfide and ammonia under the rule of compensation points. In: Slanina, J., Angeletti, G. and Beilke, S. (eds) General Assessment of Biogenic emissions and Deposition of Nitrogen Compounds, sulphur compounds and oxidants in Europe. CEC Air Pollution Research Report 47, E. Guyot SA, Brussels, pp. 71–80.

    Google Scholar 

  • Kesselmeier, J. Schäfer, L., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Jacob, V., Denis, J., Fugit, J.L., Dutaur, L., Torres, L. (1996) Emission of monoterpenes and isoprene from a Mediterranean oak species Quercus ilex L. measured within the BEMA (Biogenic Emissions in the Mediterranean Area) project. Atmos. Environ. 30, 1841–185.

    Article  Google Scholar 

  • Klemedtsson, L., B.H. Svensson, T. Rosswall, (1988). A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biol. Fertil. Soils, 6, 112–119.

    Google Scholar 

  • Kolattukudy, P.E., (1980). Cutin, suberin and waxes. In: Stumpf, P.K. (ed) The Biochemistry of Plants. Vol.4, Academic Press, New York pp. 571–645.

    Google Scholar 

  • Krämer, M., R. Conrad, (1991). Influence of oxygen on production and consumption of nitric oxide in soil. Biol. Fertil. Soils, 11, 38–42.

    Article  Google Scholar 

  • Kurkdjian, A., Guern, J. (1989). Intracellular pH: measurement and importance in cell activity. Ann. Rev. Plant Physiol. Plant Mol. Biol., 40, 271–303.

    Google Scholar 

  • Langford, A.O. and Fehsenfeld, F.C. (1992) Natural vegetation as a source or sink for atmospheric ammonia: A case study. Science. 255, 581–583.

    Article  Google Scholar 

  • Larcher, W. (1984) Ökologie der Pflanzen, 4. Auflage. Eugen Ulmer Verlag, Stuttgart, Germany.

    Google Scholar 

  • Larcher, W. (1994) Ökophysiologie der Pflanzen, 5. Auflage. Eugen Ulmer Verlag, Stuttgart, Germany.

    Google Scholar 

  • Lemon, E., Houtte, R. (1980). Ammonia exchange at the land surface. Agronomy J. 72, 876–883.

    Article  Google Scholar 

  • Lendzian, K.J. (1987) Aufnahme und zellphysiologische Wirkungen von Luftschadstoffen. Naturwissenschaften 74, 282–288.

    Article  Google Scholar 

  • Martin, J.-B., Bligny, R., Rebeille, F., Douce, R., Leguay, J. J., Mathiey, Y., Guern, J. (1982). A 31P nuclear magnetic resonance study of intracellular pH of plant cells cultivated in liquid medium. Plant Physiology, 70, 1156–1161.

    Article  Google Scholar 

  • Mattsson, M., Schjørring, J.K. (1995) Ammonia emission from the leaves of barley grown with controlled nitrogen availability. J. Exp. Bot. submitted.

    Google Scholar 

  • McKenney, D.J., C. Lazar, W.J. Findlay, (1990). Kinetics of the nitrite to nitric oxide reaction in peat. Soil Sci. Soc. Am. J., 54, 106–112.

    Article  Google Scholar 

  • Miller, A.G., Espie, G.S., Canvin, D.T. (1989) Use of carbon oxysulphide, a structural analog of CO2, to study active CO2 transport in the cyanobacterium Synechococcus UTEX 625. Plant Physiol. 90, 1221–1231.

    Article  Google Scholar 

  • Mohr, H., Schöpfer, P. (1985) Lehrbuch der Pflanzenphysiologie, 3. Auflage. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Monteith, J.L., Unsworth, M.H. (1990) Principles of Environmental Physics. Edwal Arnold, London.

    Google Scholar 

  • Morgan, J.A, Parton, W.J. (1989) Characteristics of ammonia volatilization from spring wheat. Crop Sci. 29, 726–731.

    Article  Google Scholar 

  • Nielsen, T. H., N. P. Revsbech, (1994). Diffusion chamber for nitrogen-15 determination of coupled nitrification-denitrification around soil manure interfaces. Soil Sci. Soc. Am. J., 58, 795–800.

    Article  Google Scholar 

  • Nobel, P.S., (1991). Physicochemical and Environmental Plant Physiology. Academic Press. San Diego, USA.

    Google Scholar 

  • O’Deen, W.A., Porter, L.K. (1986) Continous flow system for collecting volatile ammonia and amines from senescing wheat. Agronmy. J. 78, 746–749.

    Article  Google Scholar 

  • O’Neal, D., Joy, K. W. (1974). Glutamine synthetase of pea leaves: Divalent cation effects, substrate specificity, and other properties. Plant Physiology, 54, 773–779.

    Article  Google Scholar 

  • Parton, W.J., Morgan, J.A., Altenhofen, J.M., Harper, L.A. (1988) Ammonia Volatilization from spring wheat plants. Agronomy J. 80, 419–425.

    Article  Google Scholar 

  • Protoschill-Krebs, G., J. Kesselmeier, (1992). Enzymatic pathways for the consumption of carbonyl sulphide (COS) by higher plants. Bot. Acta 105, 85–96.

    Google Scholar 

  • Raskin, I. (1992), Role of Salycylic Acid in Plants, Ann. Rev. Plant Physiol. Plant. Mol. Biol., 43, 439–463.

    Article  Google Scholar 

  • Rudolph, J., (1995). Umsetzung und Transport von Stickstoffmonoxid (NO) in Böden. Verlag Shaker, Aachen.

    Google Scholar 

  • Rysgaard, S., N. Risgaard-Petersen, L. P. Nielsen and N. P. Revsbech, (1993). Nitrification and denitrification in lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Appl. Environ. Microbiol., 59, 2093–2098.

    Google Scholar 

  • Saad, O.A.L.O., R. Conrad, (1993). Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biol. Fertil. Soils, 15, 21–27.

    Article  Google Scholar 

  • Sablijc, A., H. Güsten, J. Schönherr, and M. Riederer, (1990). Modeling Plant Uptake of Airborne Organic Chemicals. 1. Plant Cuticle/ Water Partitioning and Molecular Connectivity. Environ. Sci. Techno., 24, 9, 1321–1328.

    Article  Google Scholar 

  • Schjørring, J.K. (1991) Ammonia emission from the foliage of growing plants. In: T.D. Sharkey, E.A. Holland, H.A. Mooney (eds), Trace Gas Emissions by Plants, Academic Press, San Diego pp. 267–292.

    Chapter  Google Scholar 

  • Schjørring, J.K. (1995) Long-term quantification of ammonia exchange between agricultural cropland and the atmosphere. I. Evaluation of a new method based on passive flux samplers in gradient configuration. Atmos. Environ. 29, 885–893.

    Article  Google Scholar 

  • Schjørring, J.K., Kyllingsbäk, A., Mortensen, J.V., Byskov-Nielsen, S. (1993a) Field investigations of ammonia exchange between barley plants and the atmosphere. I. Concentration profiles and flux densities of ammonia. Plant, Cell and Environment 16, 161–167.

    Article  Google Scholar 

  • Schjørring, J.K., Kyllingsbäk, A., Mortensen, J.V., Byskov-Nielsen, S. (1993b) Field investigations of ammonia exchange between barley plants and the atmosphere. II. Nitrogen remobilization, free ammonium content and activities of ammonium assimilating enzymes in different leaves. Plant, Cell and Environment 16, 169–178.

    Article  Google Scholar 

  • Schlesinger, W.H. (1991) Biogeochemistry, An Analysis of Global Change. Academic Press, San Diego, USA.

    Google Scholar 

  • Schönherr, J. (1982) Resistance of plant surfaces to water loss: Transport properties of cutin, suberin and associated lipids. In: Pirson, A. and Zimmermann, M.H. (eds), Encyclopedia of Plant Physiology Vol. 12 B, Springer Verlag Berlin p. 154.

    Google Scholar 

  • Schönherr, J., M. Riederer, (1989), Foliar penetration and Accumulation of Organic Chemicals in Plant Cuticles. Reviews of Environmental Contamination and Toxicology, 108, 1–69.

    Article  Google Scholar 

  • Schürmann, W. (1993). Emission von Monoterpenen aus Nadeln von Picea abies (L.) Karst. sowie deren Verhalten in der Atmosphäre. Dissertation, Technische Universität München.

    Google Scholar 

  • Schuster, M., R. Conrad, (1992). Metabolism of nitric oxide and nitrous oxide during nitrification and denitrification in soil at different incubation conditions. FEMS Microbiol. Ecol., 101, 133–143.

    Google Scholar 

  • Sharkey, T.D., Holland, E.A., Mooney, H.A. (1991) Trace Gas Emissions from plants. Academic Press, San Diego, USA.

    Google Scholar 

  • Skiba, U., K. A. Smith, D. Fowler, (1993). Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biol. Biochem., 25, 1527–1536.

    Article  Google Scholar 

  • Speer, M., Kaiser, W.M. (1991). Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol. 97, 990–997.

    Article  Google Scholar 

  • Strasburger, E. (1991) Lehrbuch der Botanik (Sitte, P., Ziegler, H., Ehrendorfer, F., Bresinsky, A., (eds) Fischer Verlag, Stuttgart, Germany.

    Google Scholar 

  • Sutton, M.A. (1990) The surface/atmosphere exchange of ammonia. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK.

    Google Scholar 

  • Sutton, M.A., Moncrieff, J.B., Fowler, D. (1992) Deposition of atmospheric ammonia to moorlands. Environ.l Pollut. 75, 15–24.

    Article  Google Scholar 

  • Sutton, M.A., Fowler, D., Moncrieff, J.B., Storeton-West, R.L. (1993a). Exchange of atmospheric ammonia with vegetated surfaces. I.Unfertilized vegetation. Quart. J. R.oy. Metr. Soc., 119, 1023–1045.

    Article  Google Scholar 

  • Sutton, M.A., Pitcairn, C.E.R., Fowler, D. (1993b) The exchange of ammonia between the atmosphere and plant communities. Adv. Ecol. Res. 24, 301–393.

    Article  Google Scholar 

  • Sutton, M., Schjoerring, J.K., Wyers, P. (1995) Plant-atmosphere exchange of ammonia. Phil. Trans. Roy. Soc. London 351, 261–278.

    Article  Google Scholar 

  • Tenhunen, J.D., Pearcy, R.W., Lange, O.L. (1987) Diurnal variations in leaf conductance and gas exchange in natural environments. In: Zeiger, E., Farquhar, G.D., Cowan I.R. (eds), Stomatal function. Stanford University Press, Stanford California, pp. 323–351

    Google Scholar 

  • Tiedje, J. M., (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonia. in: A. J. B. Zehnder (ed), Biology of Anaerobic Microorganisms, Wiley, New York, pp. 179–244.

    Google Scholar 

  • Tortoso, A. C, G. L. Hutchinson, (1990). Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N2O emissions. Appl. Environ. Microbiol., 56, 1799–1805.

    Google Scholar 

  • Vermetten, A.W.M., Hofschreuder, P., Duyzer, J.H., Diederen, H.S.M.A., Bosveld, F.C., Bouten, W. (1992). Dry deposition of SO2 onto a stand of Douglas fir: the influence of canopy wetness. In: Schwartz S.E., Slinn W.G.N. (eds), Proc. 5th IPSASEP conference, Richland, 15–19, June 1991, USA., Hemisphere publishing corporation, Washington.

    Google Scholar 

  • Warneck, P. (1988) Chemistry of the Natural Atmosphere, Academic Press, San Diego, USA. ISBN 0-12-735630-4.

    Google Scholar 

  • Wyers, G.P., Vermeulen, A.T., Slanina, J. (1992) Measurement of dry deposition of ammonia on a forest. Environ. Pollut. 75, 25–2.

    Article  Google Scholar 

  • Zumft, W. G., (1993). The biological role of nitric oxide in bacteria. Arch. Microbiol., 160, 253–264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kesselmeier, J., Bode, K., Schjørring, J.K., Conrad, R. (1997). Biological Mechanisms involved in the Exchange of Trace Gases. In: Slanina, S. (eds) Biosphere-Atmosphere Exchange of Pollutants and Trace Substances. Transport and Chemical Transformation of Pollutants in the Troposphere, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03394-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03394-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08273-3

  • Online ISBN: 978-3-662-03394-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics