Vertical Flux Measurements of the Submicronic Aerosol Particles and Parametrisation of the Dry Deposition Velocity

  • J. Fontan
  • A. Lopez
  • E. Lamaud
  • A. Druilhet
Part of the Transport and Chemical Transformation of Pollutants in the Troposphere book series (3373, volume 4)


The dry deposition velocity of submicronic aerosol particles has been measured during three campaigns corresponding to different ground cover. The eddy correlation method cannot be computed blindly, because of low frequency fluctuations. After proper filtration, the dry deposition velocity can be obtained and parametrised. During unstable situations, the dry deposition velocity gives high values.


Aerosol Particle Boundary Layer Meteorol Vertical Wind Vertical Flux Trace Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El Bakkali Y., Etude et réalisation d’un analyseur pour la mesure rapide des fluctuations de l’aérosol atmosphèrique, Thesis, Université Paul Sabatier, Toulouse, France, 1991.Google Scholar
  2. 2.
    Lamaud E., Y. Brunet, A. Labatut, A. Lopez, J. Fontan, A. Druilhet, The Landes experiment. Biosphere-atmosphere exchanges of ozone and aerosol particles above a pine forest, J. Geophys. Res. 99 D8 (1994) 16511–16521.CrossRefGoogle Scholar
  3. 3.
    Lamaud E., J. Fontan, A. Lopez., A. Druilhet, Parametrisation of the dry deposition velocity of submicronic aerosol particles, in: Air pollution II, vol 2. Pollution control and monitoring. Computational Mechanics publications Southampton, Boston 1994, pp. 433–440.Google Scholar
  4. 4.
    Wesely M.L., G.M. Thurtell, C.B. Tanner. Correlation measurements of sensible heat flux near the earth’s surface. J. Appl. Meteorol. 9 (1970) 45–50.CrossRefGoogle Scholar
  5. 5.
    Wesely M.L. Use of variance technique to measure dry air surface exchanges rates. Boundary layer Meteoro. 44 (1988) 13–31.CrossRefGoogle Scholar
  6. 6.
    Högstrom U., A.S. Högstrom. Turbulence mechanism at an agricultural site. Boundary layer Meteorol 7 (1974) 373–389.CrossRefGoogle Scholar
  7. 7.
    Wyngaard J.C., Coté O.R. The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci. 28 (1971) 190–201.CrossRefGoogle Scholar
  8. 8.
    Wesely M.N., D.R. Cook, R.L. Hart, Fluxes of gases and particles above a decideous forest in winter time, Boundary layer Meteorol. 27 (1983) (237–255).CrossRefGoogle Scholar
  9. 9.
    Wesely M.N., D.R. Cook, R.L. Hart, Measurements and parametrisation of particulate sulfur dry deposition over grass, J. Geophys. Res. 90 (1985) (2131–2143).CrossRefGoogle Scholar
  10. 10.
    Panofsky H.A., Tennekes H., Lenschow D.H., Wyngaard J.C., The characteristics of turbulent velocity component in the surface layer under convective conditions. Boundary layer Meteorol. 11 (1977) 355–361.CrossRefGoogle Scholar
  11. 11.
    Wyngaard J.C., Cote O.R. The evolution of a convective planetary convective layer, a higher order-closure model study. Boundary layer Meteorol. 7 (1974) 289–308.CrossRefGoogle Scholar
  12. 12.
    Hicks, B.B., M.L. Wesely, J.L. Durham, and M.A. Brown, Some direct measurements of atmospheric sulfur fluxes over a pine plantation, Atmos. Environ. 17 (1982) (2899–2903).Google Scholar
  13. 13.
    Hicks, B.B., D.D., Baldocchi, T.P. Meyers, R.P. Hosker, and D.R. Matt, A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities, Water, Air, and soil Pollut. 36 (1987) (311–330).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. Fontan
    • 1
  • A. Lopez
    • 1
  • E. Lamaud
    • 1
  • A. Druilhet
    • 1
  1. 1.Laboratoire d’Aérologie, U.A. associée au CNRS No. 358Université Paul SabatierToulouseFrance

Personalised recommendations