Atmospheric Particles and their Interactions with Natural Surfaces

  • Martin Gallagher
  • Jacques Fontan
  • Paul Wyers
  • Walter Ruijgrok
  • Jan Duyzer
  • Paul Hummelshøj
  • Kim Pilegaard
  • David Fowler
Part of the Transport and Chemical Transformation of Pollutants in the Troposphere book series (3373, volume 4)


The purpose of this short review will be to focus on those aspects of aerosol exchange which are of importance to the BIATEX community in order to aid in the assessment of acidic or alkaline deposition, from dry and wet aerosol (in the form of cloud or fog droplets) over Europe with an eye to the larger scale processes in which aerosols play a critical role. One of the important goals of the Biatex program, emphasised by its co-ordinator, has been the necessity to deliver information about these processes which are “useful” to wider interests, in particular the modelling community. In light of the co-ordinators plea for “immediately useful information” a detailed summary of parameterisations which have been forthcoming in BIATEX and related programmes for both dry and wet aerosol deposition are listed in the Appendix.

Within the BIATEX program paniculate deposition has not received as much attention as has trace gas exchange and is an area which still requires much investigation. Encouragingly, recent work reported at the EUROTRAC BIATEX workshop in Madrid, 1995, has produced reliable parameterisations that are now well supported by a growing experimental database. The results reported were obtained using very different instrumentation and measurement techniques and this strengthened the final conclusions drawn. The oft held view that there is significant disagreement surrounding dry deposition measurements would appear to recede in the light of these results. In particular there has been pleasing agreement between measurements of dry deposition velocity, V d, for aerosols to forest canopies by micrometeorological techniques and throughfall-stemflow or surface type measurements quoted in the literature. The eddy correlation (EC) technique employed for aerosol flux measurements which has often been plagued by susceptibility to low-frequency contamination and instrumental limitations has significantly benefited from the work of Lamaud et al. (1994) who show that aerosol fluxes cannot be “blindly” computed using the analysis techniques generally used for trace gas fluxes.

We are now confident that the dry deposition velocity is well defined by measurement for typical atmospheric aerosol loadings, probably better than to within a factor of 2. Gaps still exist in our understanding of the detailed particle size dependence for the various physical transport processes in the crucial size region 0.1–1.0 μm. The classical model picture handed down to us, and based on wind tunnel data does not take into account the influence of e.g. stability and related burst effects, and would appear to underestimate deposition velocities in this size range for rough vegetation. It still remains for the latest experimental results to be compared in detail with the latest models, which are now beginning to address this discrepancy by the inclusion of additional transport mechanisms.


Deposition Velocity Cloud Water Cloud Droplet Atmospheric Particle Eddy Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalst, R.M. van (1986). Dry deposition of aerosol particles. In: S.D. Lee, T. Scheider, L.D. Grant, PJ. Verkerk (eds), Aerosols. Lewis Publ., Chelsea (MI), pp. 933–949.Google Scholar
  2. ApSimon, H.M., Kruse, M., Bell, J.N.B (1987) Ammonia emissions and their role in acid deposition. Atmos.Environ. 21, 1947–1987.CrossRefGoogle Scholar
  3. Asman W.A.H., Jaarsveld, H.A. van (1991). A variable-resolutio statistical transport model applied to ammonia and ammonium. RIVM, Bilthoven, report 228471007.Google Scholar
  4. Bache, D.H. (1979). Particle transpor within plant canopies. II prediction of deposition velocities. Atmos. Environ. 13, 1681–1687.CrossRefGoogle Scholar
  5. Belot, Y., Bailie, A., Delmas, J.L., (1976), Modéle numérique de dispersion des pollutants atmosphérique en présence de couverts végétaux. Atmos.Environ. 10, 89–98.CrossRefGoogle Scholar
  6. Bache, D.H. (1979) Particle Transport Within Plant canopies-I. A Framework for Analysis. Atmos. Environ. 13, 1257–1262.CrossRefGoogle Scholar
  7. Bache, D.H. (1979) Particle Transport Within Plant canopies — II Prediction of Deposition Velocities. Atmos. Environ. 13, 1681–1687.CrossRefGoogle Scholar
  8. Beswick, K.M., Hargreaves, K.J., Gallagher, M.W., Choularton, T.W., Fowler, D., (1991) Size-resolved measurements of cloud droplet deposition velocity to a canopy using an eddy correlation technique. Quart. J. Roy. Met. Soc. 117, 623–645.CrossRefGoogle Scholar
  9. Beswick, K.M., M.W. Gallagher, P. Hummelshøj, K. Pilegard, N.O. Jensen, J. Duyzer (1994) Aerosol exchange to Speulder Forest. in: P.M. Borrell, P. Borrell, T. Cvitaš, W. Seiler (eds), Proc. EUROTRAC Symp.’ 94, SPB Academic Publishing bv, The Hague 1994, pp. 683–688.Google Scholar
  10. Beswick, K.M. (1990) Measurements of Cloud Water Deposition to Forests and Moorland. PhD Thesis. University of Manchester Institute of Science and Technology.Google Scholar
  11. Bower, K.N., Wells, M., Choularton, T.W., Sutton, M.A. (1995) A Model of Ammonia/Ammonium Conversion and Deposition in a Hill Cap Cloud. Quart. J. Roy. Met. Soc. 121, 569–591.CrossRefGoogle Scholar
  12. van Breeman, N., Burrough, P.A., Velthorst, E.J., van Dobben, H.F., de Wit, T., Ridder, T.B. Reijnders, H.F.R. (1982) Soil acidification from atmospheric ammonium sulfate in forest canopy throughfall. Nature 299, 548–550.CrossRefGoogle Scholar
  13. Brueckmann, A. (1988). Radionuklidbilanz von 4 Waldoekosystemen nach dem Reaktorunfall in Tschernobyl und eine Bestimmung der trockenen Deposition. Diplomarbeit Forstwissenschaftlicher Fachbereich, Göttingen.Google Scholar
  14. Chamberlain, A.C., (1960), Aspects of the deposition of radioactive and other gases and particles. Int. J. Air. Pollut. 3, 63–68.Google Scholar
  15. Chamberlain, A.C. (1966), Transport of Gases to and from Grass and Grass-Like Surfaces, Proc. Roy. Soc. London A, 236–265.Google Scholar
  16. Chamberlain, A.C. (1975), The moverment of particles in plant communities. In: J.L. Monteith (ed), Vegetation and the Atmosphere, Academic Press, London, Vol.1, pp. 155–201.Google Scholar
  17. Chamberlain, A.C.(1983), Deposition and Resuspension. In: Prupacher et al (eds), Precipitation Scavenging, Dry Deposition and Resuspension. Elsevier Science Publishing Co.Inc.Google Scholar
  18. Coe, H., Choularton, T.W., Carruthers, D.J., Gallagher, M.W., Bower, K.N. (1991) A model off occult deposition applicable to complex terrain. Quart. J. Roy.Met Soc. 117, 803–823.CrossRefGoogle Scholar
  19. Collett, J. Jr., Lovinelli, R., Demoz, B.(1995) A Three-stage cloud impactor for size resolved measurements of cloud drop chemistry. (1995), Atmos.Environ, in press.Google Scholar
  20. Collett, J. Jr., Oberholzer, B., Staehelin, J. (1993) Cloud Chemistry at Mt. Rigi, Switzerland: dependence on drop size and relationship to precipitation chemistry, Atmos. Environ. 27A, 3–42.Google Scholar
  21. Collett, J.L. Jr., Bator, A., Rao, X., Demoz, B.B. (1994) Acidity variations across the cloud drop size spectrum and their influence on rates of atmospheric sulfate production. Geophys. Res. Lett. 21, 2393–2396.CrossRefGoogle Scholar
  22. Davidson, C.L, Miller, J.M., Pleskow, M.A. (1982) The influence of surface structure on predicted particle dry deposition to natural grass canopies. Water Air and Soil Pollut.18, 25–44.CrossRefGoogle Scholar
  23. Dollard, J.G., Unsworth, M.H., Harvey, M.J. (1983), Pollutant transfer in upland regions by occult deposition. Nature. 302, 241–247.CrossRefGoogle Scholar
  24. Dröscher, F., Nickel, J., Mikisch, E., (1989) Measurement of dew and fogwater deposition in forest stands. In: H.-W. Georgii (ed), Mechanisms and Effects of Pollutant-Transfer into Forests, Kluwer Academic Publishers, pp, 205-212.Google Scholar
  25. Duan, B. C.W. Fairall, D.W. Thomson, (1988), Eddy Correlation Measurements of the Dry Deposition of Particles in Wintertime J. App. Met. 27, 642–52.CrossRefGoogle Scholar
  26. Duyzer, J.H, H.L.M Verhagen, J.H. Westrate, F.C. Bosveld (1992), Measurement of the dry deposition flux of NH3 onto coniferous forest. Environ. Pollut. 75, 3–13.CrossRefGoogle Scholar
  27. Duyzer, J.H., Bosveld, F.C. (1988) Measurements of the dry deposition of fluxes of O3, NOx, SO2, and particles over grass/heathland vegetation and the influence of surface inhomogeneity. MT-TNO Delft, report R 88/111.Google Scholar
  28. Duyzer, J., Westrate, H., Beswick, K., Gallagher, M.W., (1994), Measurements of the dry deposition flux of sulfate and nitrate aerosols to the Speulderbos using Micrometeorological Methods. TNO Report TNO-MW-R 94/255 Oct.21, 1994 Dutch Priority Programme on Acidification, TNO Institute of Environmental Sciences, P.O.Box 6011, NL-2600 JA, Delft Netherlands.Google Scholar
  29. Duyzer, J.H., J.H. Westrate, H.S.M.A. Dierderen, A. Vermetten, P. Hofschreuder, P. Wyers, F.C. Bosveld, J.W. Erisman, (1994) The deposition of acidifying compounds and ozone to the Speulderbos derived from gradient measurements in 1989 and 1989. TNO Report R94/095.Google Scholar
  30. Duyzer, J.H., Bowman, A.M.H., Diederen, H.M.S.A., von Aalst, R.M. (1987), Measurements of dry deposition of NH3 and NH4 over natural terrains. Research Report no. R87/273, Netherlands Organisation for Applied Scientific Research (TNO).Google Scholar
  31. Duyzer, J., H. Westrate, K. Beswick, M. Gallagher, (1994). Measurements of the dry deposition flux of sulfate and nitrate aerosols to the Speulderbos using Micrometeorological Methods. TNO Report, TNO-MW-R 94/244, Oct. 21, 1994 No. 51628, Dutch Priority Programme on Acidification.Google Scholar
  32. Duyzer, J.H., Bosveld, F.C. (1988) Measurements of the dry deposition of fluxes of O3, NOx, SO2, and particles over grass/heathland vegetation and the influence of surface inhomogeneity. MT-TNO Delft, report R 88/111.Google Scholar
  33. Erisman, J.W. (1993) Acid deposition onto nature areas in the Netherlands. Part I: Throughfall measurements compared to deposition estimates. Water Air and Soil Pollut. 71, 51–80.CrossRefGoogle Scholar
  34. Erisman, J.W., Mennen, M.G., Hogenkamp, J.E.M. Kemkers, E., Goedhart, D., van Pul, W.A.J., Boermans, G.M.F., Duyzer, J.H., Wyers, G.P. (1993). Evaluation of dry deposition measurements for monitoring applicatiom over the Speulder forest. RIVM, Bilthoven, report 722108002.Google Scholar
  35. Fairall, C.W. (1984), Interpretation of Eddy Correlation Measurements of Particulate Deposition and Aerosol flux. Atmos. Environ. 18, 1329–37.CrossRefGoogle Scholar
  36. Fitzgerald, J.W. (1975) Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. J. App. Met. 14, 1044–1049.CrossRefGoogle Scholar
  37. Fontan, J., Lopez, A, Lamaud, E., Druilhet, A, (1995) Vertical Flux Measurements of the Sub-Micronic Aerosol Particles and Parameterization of the Dry Deposition Velocity, this volume.Google Scholar
  38. Fowler, D., Duyzer, J.H., Baldocchi, D.D. (1991) Inputs of Trace Gases, Particles and Cloud Droplets to Terrestrial Surfaces. Proc. Roy. Soc. Edinburgh 97B, 35–59.Google Scholar
  39. Fowler, D., Gallagher, M.W., Lovett, G.M. (1992), Wet, Cloud Water and Fog Deposition”, In: G.Lövland, J.W. Erisman, D.Fowler (eds), Models and Methods for the Quantification of Atmospheric Input to Ecosystems, Nordiske Seminar-og Arbejds-rapporter, pp. 51-74.Google Scholar
  40. Fowler, D., Cape, J.N., Unsworth, M.H., (1989), Deposition of Atmospheric Pollutants on Forests, Phil. Trans. Roy. Soc. London B324, 247–265.Google Scholar
  41. Fowler, D., Cape, J.N., Leith, I.D., Choularton, T.W., Gay, M.J., Jones, A. (1988). The influence of altitude on rainfall composition at Great Dun Fell. Atmos.Environ. 22, 1355–1362.CrossRefGoogle Scholar
  42. Gallagher, M. (1995). Deposition of Aerosol to Forests: Measurements from the Speulderbos Experiment. EUROTRAC BIATEX workshop on Deposition and Biogenic Emission, Madrid, January 16–17, 1995.Google Scholar
  43. Gallagher, M.W., Choularton, T.W., Morse, A.P., Fowler, D. (1988) Measurements of the size dependence of cloud droplet deposition at a hill site. Quart J. Roy. Met. Soc. 114, 1291–1303.CrossRefGoogle Scholar
  44. Gallagher, M.W., Beswick, K.M., Choularton, T.W., Coe, H., Fowler, D., Hargreaves, K. (1992). Measurements and Modelling of Cloudwater Deposition to Moorland and Forests. Environ. Pollut. 75, 97–107.CrossRefGoogle Scholar
  45. Gallagher, M.W., Beswick, K.M. and Choularton, T.W. (1992). Measurements and modelling of cloud water deposition to a snow covered forest. Atmos. Environ. 26A, 2893–2904.Google Scholar
  46. Gallagher, M.W., T.W. Choularton, A. Wicks, K.M. Beswick, H. Coe, M. Sutton, D. Fowler, J. Duyzer, P. Wyers (1992) Measurements of aerosol exchange to Heather Moor. in: P.M. Borrell, P. Borrell, T. Cvitaš, W. Seiler (eds), Proc. EUROTRAC Symp.’ 92, SPB Academic Publishing bv, The Hague 1993, pp. 694–69Google Scholar
  47. Garland, J.A., Cox, L.C, (1982) Deposition of small particles to grass,. Atmos. Environ. 16, 2699–2702.CrossRefGoogle Scholar
  48. Gould, T.R., Davidson, C.I. (1992) Variability and uncertainty in particle dry deposition modelling. In: S.E. Schwarz, W.G.N. Slinn (eds), Precipitation scavenging and atmosphere-surface exchange processes. Hemisphere pub., Washington DC pp. 1125–1142.Google Scholar
  49. Grosch, S., Schmitt, G. (1988) Experimental Investigations on the Deposition of Trace Elements in Forest Area, in: Grefen, K., Löbel, L. (eds), Environmental Meteorology, Kluwer Academic Publishers, pp. 201-216.Google Scholar
  50. Hatakayama, S., Izumi, K., Fukuyama, T., Akimoto, H. (1989) Reactions of ozone with α-pinene and β-pinene in air: yields of gaseous and particulate products. J. Geophys. Res. 94, 13013–13024.CrossRefGoogle Scholar
  51. Hicks, B.B., Baldocchi, D.D., Meyers, A.J.T.P., Hosker, R.P., Matt, D.R. (1987). A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air and Soil Pollut. 36, 311–330.CrossRefGoogle Scholar
  52. Hicks, B.B. (1984). Deposition both Wet and Dry. in: Hicks (ed), Acid Precipitation Series Vol. 4. Butterworth.Google Scholar
  53. Hinds, W.C., (1982) Aerosol technology, properties, behaviour and measurement of airborne particles. John Wiley and Sons.Google Scholar
  54. Hoefken, K.D., Gravenhorst, G. (1983) Utersuchung ueber die Deposition Atmosphaerischer Spurenstoffe an Buchen-und Fichten Wald. In UBA — Berichte 6/83, Teil II, Schmidt-Verlag, Berlin.Google Scholar
  55. Hori, T. (ed), (1953), Studies on Fogs. Tanne Trading Co. Hokaido, Sapporro.Google Scholar
  56. Hummelshøj, P., Jensen, N.O., Larsen, S.E. (1992). Particle Dry Deposition to a Sea Surface. In: Schwarz, S.E., Slinn, W.G.N. (eds), Precipitation Scavenging and Atmosphere-Surface Exchange, Vol. 2. Hemisphere Pub.Corp. USA, pp. 892–840.Google Scholar
  57. Hummelshøj, P. (1992) Dry Deposition of Particles and Gases, Ph.D.Thesis RISØ National Laboratory Denmark, 1992.Google Scholar
  58. Hummelshøj, P., Ruijgrok, W., Semb, A., Westling, O., Wyers, P. (1992) Working Group report on dry depositon of particles. In: G. Lövland, J.W. Erisman, D. Fowler (eds), Models and Methods for the Quantification of Atmospheric Input to Ecosystems, Nordiske Seminar-og Arbejds-rapporter, 1993:573 pp. 33-35.Google Scholar
  59. Ibrahim, M., Barrie, L.A., Fanaki, K., (1983), An experimental and theoretical investigation of the dry deposition of particles to snow, pine trees and artificial collectors. Atmos. Environ. 17, 781–788.CrossRefGoogle Scholar
  60. Izumi, K., Fukuyama, T. (1990) Photochemical Aerosol Formation from Armatic Hydrocarbons in the presence of Nox. Atmos. Environ. 24A, 1433–1441.Google Scholar
  61. Iversen, T., Halvorsen, N., Mylona, S., Sandnes, H. (1991). Calculated budgets for airborne acidifying components in Europe. EMEP Meteorological Synthesizing Centre West, Norwegian Meteorological Institute, Oslo.Google Scholar
  62. IPCC (1992) Climate Change 1992, in: Houghton et al. (eds), Supplement Report to IPCC Scientific Assessment, Cambridge University Press.Google Scholar
  63. Johnson, A.H., (1987), Deterioration of red spruce in the northern Appalachian Mountains. In: T.C. Hutchison, K.M. Meema (eds), Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems, NATO ASI series, vol. 916 Springer-Verlag, Heidelberg pp. 83–99.CrossRefGoogle Scholar
  64. Joutsenoja, T. (1992), Measurements of Aerosol Deposition to a Cereal Crop. In: Choularton, T.W. (ed), Measurements and Modelling of Gases and Aerosols to Complex Terrain — NERC Report 1992, GR3/7259 A.P.I. Appendix XI.2.Google Scholar
  65. Katen, P.C., Hubbe, J.M., (1983), Size resolved measurements by eddy correlation of the dry deposition velocity of atmospheric aerosols. In: Pruppacher, Semonin, R.G., Slinn, W.G. (eds), Precipitation Scavenging, Dry Deposition and Resuspension, Elsevier Science Publishing Co. New York pp. 953–961.Google Scholar
  66. Kowalski, A.S., Anttioni, P.M., Vong, R.J., Delany, A.C., Maclean, G.D. (1996) Deployment an evaluation of a system for ground-based measurements of cloud liquid water turbulent fluxes. To be submitted.Google Scholar
  67. Krause, G.M.H., Arndt, U., Brandt, D.J., Bucher, J., Kenk, G., Matzner, E., (1986), Forest decline in Europe: development and possible causes. Water Air Soil Pollut. 31, 647–688.CrossRefGoogle Scholar
  68. Kroll, G., Winkler, P. Trace substance input to coniferous forests via cloud interception. (1989) In: H.-W. Georgii (ed), Mechanisms and Effects of Pollutant-Transfer into Forests, Kluwer Academic Publishers pp. 205-212.Google Scholar
  69. Lamaud, E., Y. Brunet, A. Labatut, A. Lopez, J. Fontan, A. Druilhet, (1994a) The Landes Experiment: Biosphere-Atmosphere Exchanges of Ozone and Aerosol Particles Above a Pine Forest, J. Geophys.Res. 99D8, 16511–16521.CrossRefGoogle Scholar
  70. Lamaud, E., A. Labatut, J. Fontan, A. Lopez, A. Druilhet, Y. Brunet, (1994b) Biosphere Atmosphere exchanges: Ozone and aerosol dry deposition velocities over a pine forest. Non CO2 greenhouse gases. Why and how to control. Maastricht, Environmental Monitoring Assessment 31, 175–181.CrossRefGoogle Scholar
  71. Lamaud, E., J. Fontan, A. Lopez, A. Druilhet, (1994c) Parameterization of the dry deposition velocity of sub-micron aerosol particles. Air Pollution II, Vol 2. Pollution Control and Monitoring. Computational Mechanics Publications, Southamption, Boston pp 433–40.Google Scholar
  72. Lelieveld, J., Heintzenberg, (1992) Sulfate cooling effect on climate through in-cloud oxidation of anthropogenic SO2. Science. 258, 117–12.CrossRefGoogle Scholar
  73. Little, P. (1977) Deposition of 2.75, 5.0 and 8.5 μm particles to plant and soil surfaces. Environ. Pollut. 12, 293–305.CrossRefGoogle Scholar
  74. Lewellen, W.S. (1985). Modeling Turbulent Exchange in Forest Canopies. In: Hutchison, B.A., Hicks, B.B. (eds), The Forest-Atmosphere Interaction, pp.481-499.Google Scholar
  75. Lindberg, S.E., Lovett, G.M. (1985) Field measurements of particle dry deposition rates to foliage and inert surfaces in a forest canopy,. Environ. Sci. and Tech. 19, 238–244.CrossRefGoogle Scholar
  76. Lorenz, R., Murphy JR, C.E., (1989), Dry Deposition of Particles to a Pine Plantation. Boundary-Layer Met. 46, 355–366.CrossRefGoogle Scholar
  77. Lövblad, G. (1992). Mapping deposition over Sweden. In. Schwartz, S.E., Slinn, W.G.N. (eds), Precipitation scavenging and atmosphere surface exchange processes. Hemisphere. Publ. Washington DC pp. 1533–1542.Google Scholar
  78. Lovett, G.M. (1981) Forest Structure and Atmospheric Interactions. Predictive Models for Subalpine Fir Forests. Ph.D. Thesis, Dartmouth College, Hanover, New Hampshire.Google Scholar
  79. Lovett, G.M. (1984). Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmos. Environ. 19, 361–371.Google Scholar
  80. Lovett, G.M. (1986). Canopy structure and cloud water deposition in a subalpine coniferous forest. Tellus 36, 319–327.Google Scholar
  81. Milne, R., Crossley, A., Unsworth, M.H. (1989), Physics of cloudwaterdeposition and evaporation at Castlelaw, S.E. Scotland. In: M.H. Unsworth, D. Fowler (eds), Acid deposition processes at high elevation sites. Klewer, Dordrecht pp.299–307.Google Scholar
  82. Murphy, C.E. JR, Lorenz, R., (1985) Analysis of Forest Environmental Measurements to Estimate Parameters of Microclimate and Air Pollution Deposition Velocity Models. In: Hutchison, B.A., Hicks, B.B. (eds), The Forest-Atmosphere Interaction, pp. 383-393 Google Scholar
  83. Neumann, H.H., Den Hartog, G. (1985) Eddy correlation measurements of Atmospheric fluxes of ozone, sulfur and particulates during the Champaign Intercomparison Study. J. Geophys. Res. 90D1, 2097–2110.CrossRefGoogle Scholar
  84. Nicholson, K.W. (1988) The dry deposition of small particles: a review of experimental measurements. Atmos. Environ. 22, 2653–2666.CrossRefGoogle Scholar
  85. Noone, K.J., Charlson, R.J., Covert, D.S, Ogren, J.A., Heintzenberg, J., (1988) Chemical composition differences in fog and cloud droplets of different sizes. J. Geophys. Res. 93, 9477–9482.CrossRefGoogle Scholar
  86. Noone, K.J., Covert, D.S, Ogren, J.A., Heintzenberg, J., (1990) An examination of clouds at a mountain-top site in central Sweden: the distribution of solute within cloud droplets. Atmos. Res. 25, 3–15.CrossRefGoogle Scholar
  87. Ogren, J.A., Charlson, R.J., (1992) Implications for models and measurements of chmeical inhomogeneities among cloud droplets, Tellus 44B, 208–225,.Google Scholar
  88. Ogren, J.A., Heintzenberg, J., Zuber, A, Noone, K.J., Charlson, R.J., (1989) Measurements of the size dependence of solute concentrations in cloud droplets, Tellus 41B, 24–31.CrossRefGoogle Scholar
  89. Ogren, J.A., Noone, K.J., Hallberg, J., Heintzenberg, J., Schell, D., Berner, A., Solly, I., Kruisz, C, Reischle, G., Arends, B.G., Wobrock, (1992) Measurements of the size dependence of the concentration of non-volatile material in fog droplets, Tellus 44B, 570–580.Google Scholar
  90. Peters, K., Eiden, R (1992) Modelling the dry deposition velocity of aerosol particles to a spruce forest. Atmos. Environ. 26A, 2555–2564.Google Scholar
  91. RGAR (1987) Acid Deposition in the UK 1981-1985. In The Second Report of the UK Review Group on Acid Rain. Stevenage: Warren Spring Laboratory 104 pp.Google Scholar
  92. RGAR (1990) Acid Deposition in the UK 1986-1988. In The Third Report of the UK Review Group on Acid Rain. Stevenage: Warren Spring Laboratory 104 pp.Google Scholar
  93. RGIND (1994) UK Review Group on Impacts of Nitrogen Deposition on Terrestrial Ecosystems. Pitcairn, C.E.R. (ed), UK Dept. of Environ.Google Scholar
  94. Ruijgrok, W., H. Tieben, P. Eisinga, (1994). Dry Deposition of Acidiyinf and Alkaline Particles to Douglas Fir — A Comparison of Measurements and Model Results. KEMA Report Dutch Priority Programme on Acidification. 20159-KES/MLU 94-3216 No 83397. KC.17-94P02.Google Scholar
  95. Ruijgrok, W., Nicholson, K.W., Davidson, C.I. (1993) Dry Deposition of Particles, In: G. Lövland, J.W. Erisman, D. Fowler (eds), Models and Methods for the Quantification of Atmospheric Input to Ecosystems, Nordiske Seminar-og Arbejds-rapporter, 1993:573 Appendix 5, pp 145-162.Google Scholar
  96. Ruijgrok, W., (1992) Uncertainty in models calculating the dry deposition of aerosols to forests. In: N. Fukuta and P.E. Wagner (eds) Nucleation and atmospheric aerosols. Deepak Publ., Hampton pp. 481–85.Google Scholar
  97. Sehmel, G. (1973). Particle Eddy Diffusivities and Deposition Velocities for isothermal Flow and Smooth Surfaces. Aerosol Sciences 4, 125–138.CrossRefGoogle Scholar
  98. Sehmel, G. (1980) Particle and Gas Dry Deposition: A Review. Atmos. Environ. 14, 983–1011.CrossRefGoogle Scholar
  99. Sehmel, G.A., Hodgson, W.H. (1980) A Model for predicting dry deposition of particles and gases to environmental surfaces. In AICHE Symposium Series 76, pp 218–230.Google Scholar
  100. Seinfeld, J.H. (1986) Atmospheric Chemistry and Physics of Air Pollution. Wiley Interscience Publication, New York, USA.Google Scholar
  101. Shuttleworth, W.J. (1977), The exchange of wind driven fog and mist between vegetation and the atmosphere. Boundary-Layer Met. 12, 463–489.CrossRefGoogle Scholar
  102. Sievering, H. (1982) Profile measurements of Particle Dry Deposition Velocity at an Air-Land Interface. Atmos. Environ. 16, 301–306.CrossRefGoogle Scholar
  103. Sievering, H. (1983) Eddy Flux and Profile measurements of Small particle dry-deposition velocity at the Boulder Atmospheric Observatory. In: Pruppacher, Semonin, R.G., Slinn, W.G. (eds), Precipitation Scavenging, Dry Deposition and Resuspension, pp. 963-977.Google Scholar
  104. Sievering, H. (1987) Small particle dry deposition under high wind speed conditions: eddy flux measurements at the Boulder Atmospheric Observatory. Atmos. Environ. 21, 2179–2185.CrossRefGoogle Scholar
  105. Sievering, H. (1988) Small-Particle Dry Deposition Measurements: A comparison of Gradient and Eddy-Flux Techniques over Agricultural Fields. In: Annual Meeting of Air Pollution Central Association, Dallas, Texas, June 19-24, 1988, 6, 88–101.Google Scholar
  106. Slinn, W.G., L. Hasse, B.N. Hicks, A.W. Hogan, D. Lai, P.S. Liss, K.O. Munnich, G.A. Sehmel, O. Vittori. (1978) Some Aspects of the Transfer of Atmospheric Trace Constituents past the Air-Sea Interface. Atmos. Environ. 12, 2055–2087.CrossRefGoogle Scholar
  107. Slinn, W.G.N. (1982) Predictions for Paricle Deposition to Vegetative Canopies. Atmos. Environ. 16, 1785–1794.CrossRefGoogle Scholar
  108. Slinn, W.G.N. (1983) A Potpourri of Deposition and Resuspension Questions. In: Pruppacher, Semonin, R.G., Slinn, W.G.N. (eds), Precipitation Scavenging, Dry Deposition and Resuspension, Elsevier Science Publishing Co., New York pp. 1361–1416.Google Scholar
  109. Seinfeld, J.H. (1986) Atmospheric Chemistry and Physics of Air Pollution. John Wiley and Sons Inc.Google Scholar
  110. Spyros, N., Pandis, S.N. et al. (1991) Aerosol formation in the Photooxidation of isoprene and β-pinene. Atmos. Environ. 25A, 997–1008.Google Scholar
  111. Sutton, M. (1995). Generalised description of ammonia exchange. EUROTRAC BIATEX workshop on Deposition and Biogenic Emission, Madrid, January 16–17, 1995.Google Scholar
  112. Twomey, S. (1977) Atmospheric Aerosols, Elsevier Scientific Publishing Co.Google Scholar
  113. Unsworth, M.H., (1984) Evaporation from forests in cloud enhances the effects of acid deposition. Nature 312, 262–264.CrossRefGoogle Scholar
  114. Unsworth, M.H., Crossley, A. (1987) Capture of wind-driven cloud by vegetation. In: P.J. Coughrey, M.H. Martin, M.H. Unsworth (eds), Pollutant transfer and fate in ecosystems British Ecological Society special publication no. 6, Blackwell Scientific, Oxford pp. 125–137.Google Scholar
  115. Vincent, J.H. (1989) Aerosol Sampling: Science and Practice. John Wiley Sons.Google Scholar
  116. Vong, Richard J., Andrew S. Kowalski, (1995). Eddy Correlation Measurements of Size-Dependent Cloud Droplet Turbulent Fluxes to Forest, Tellus, accepted.Google Scholar
  117. Vong, R.J., Bailey, B.H., Markus, M.J., Mohnen, V.A. (1990), Factors governing cloud water composition in the Appalachian mountains. Tellus 42B, 435–453.Google Scholar
  118. Vong, R.J., Mohnen, V., Kadlecek, J., Bailey, B., Mueller, S., Meagher, J., Baumgardner, R. (1990). Network Measurements of Droplet Deposition of Atmospheric Pollutants. In: D. Sisterson (ed), NAPAP State of Science and Technology Report No. 6, National Acid Precipitation Assessment Program Washington, DC, June 1990.Google Scholar
  119. Vong, R. (1991) Cloud water deposition to Appalachian Forests. Environ. Sci.Technol. 25,6, 1014–1021.CrossRefGoogle Scholar
  120. Wang et al. (1992a) Aerosol Formation and Growth in Atmospheric Organic NOx Systems-I. Outdoor Smog Chamber Studies of C7 and C8 Hydrocarbons. Atmos. Environ. 26A, 403–420.Google Scholar
  121. Wang et al. (1992b) Aerosol Formation and Growth in Atmospheric Organic NOx Systems-II. Aerosol Dynamics. Atmos. Environ. 26A, 421–434.Google Scholar
  122. Warraghai, A. and G. Gravenhorst.(1989), Dry Deposition of Atmospheric Particles to an Old Spruce Stand. In: H.-W. Georgii (ed), Mechanisms and Effects of Pollutant-Transfer into Forests, Kluwer Academic Publishers pp. 77-86.Google Scholar
  123. Wesely, M.L., Hicks, B.B., Dannevik, W.P., Frisella, S., Husar, R.B. (1977) An eddy correlation measurement of particulate deposition from the atmosphere. Atmos. Environ. 11, 561–563.CrossRefGoogle Scholar
  124. Wesely, M.L. Cook, D.R., Hart, R.L. (1983). Fluxes of Gases and Particles Above a Deciduous Forest in Wintertime. Boundary Layer Met. 27, 237–255.CrossRefGoogle Scholar
  125. Wesely, M.L. Cook, D.R., Hart, R.L. (1983). Fluxes of Gases and Particles Above a Deciduous Forest in Wintertime. Boundary Layer Met. 27, 237–255.Google Scholar
  126. Westrate, H., Duyzer, J., (1994) Evaluation of the gradient method for use in monitoring dry depositiion at Speuld based on measurements for ozone. TNO — IMW Delft Report, R94-104.Google Scholar
  127. Whitby, K.T., Cantrell, B. (1976) Fine Particles, in: Int.Conf. on Environmental Sensing and Assessment, Las Vegas, NV, IEEE.Google Scholar
  128. Williams, R.M., (1982) A model for the dry deposition of particles to natural water surfaces. Atmos. Environ. 17, 1933–1938.Google Scholar
  129. Wiman, B.L.B., Agren, G.I. (1985). Aerosol depletion and deposition in forests — a model analysis. Atmos. Environ. 19, 335–36CrossRefGoogle Scholar
  130. Wyers, P. (1995). Overview of Ammonia and Aerosols. EUROTRAC BIATEX Workshop on Deposition and Biogenic Emission, Madrid, January 16–17, 1995.Google Scholar
  131. Wyers, G.P. Veltkamp, Vermeulen, A.T., Geusebroek, M., Wayers, A., Möls, J.J., (1994), Deposition of Aerosol to Coniferous Forest. ECN Report December-C-94-051, Netherlands Energy Research Foundation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Martin Gallagher
    • 1
  • Jacques Fontan
    • 2
  • Paul Wyers
    • 3
  • Walter Ruijgrok
    • 4
  • Jan Duyzer
    • 5
  • Paul Hummelshøj
    • 6
  • Kim Pilegaard
    • 6
  • David Fowler
    • 7
  1. 1.Institute of Science and TechnologyUniversity of ManchesterUK
  2. 2.Laboratoire d’AerologieUniversité Paul SabatierFrance
  3. 3.ECNEnergy Research Foundationthe Netherlands
  4. 4.KEMA Environmental ScienceArnhemthe Netherlands
  5. 5.TNO Institute of Environmental SciencesDelftthe Netherlands
  6. 6.RISØ National LaboratoryRoskildeDenmark
  7. 7.Institute of Terrestrial EcologyUK

Personalised recommendations