Skip to main content
  • 205 Accesses

Abstract

It is now well established that the ozone molecules present in the lower troposphere generally undergo a downward flux through the surface layer, as a consequence of a dry deposition process at the surface. This fact was first described by Regener [1]. Rich et al. [2] studied the removal of ozone from the air by bean leaves under controlled conditions and found that its rate follows a pattern that is very similar to that of evaporation. Using the resistance analogy, they inferred from these observations that both processes are controlled by the stomatal aperture. Galbally [3] and Galbally and Roy [4] measured ozone deposition rates using enclosure techniques on various surface types, both bare and vegetated. Turner et al. [5] stated that both bare soils and vegetation are targets for ozone deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V.H. Regener, The vertical flux of ozone, J. Geophys. Res. 62 (1957) (221).

    Article  Google Scholar 

  2. S.E. Rich, P.E. Waggoner, H. Tomlinson, Ozone uptake by bean leaves, Science 169 (1970) (79).

    Article  Google Scholar 

  3. I.E. Galbally, Ozone profiles and ozone fluxes in the atmospheric surface layer, Quart. J. Roy. Met. Soc. 97 (1971) (18).

    Article  Google Scholar 

  4. I.E. Galbally, C.R. Roy, Destruction of ozone at the earth’s surface, Quart. J. Roy. Met. Soc. 106 (1980) (599–620).

    Article  Google Scholar 

  5. N.C. Turner, S. Rich, P.S. Waggoner, Removal of ozone by soil, J. Environ. Qual. 2 (1973) (259–264).

    Article  Google Scholar 

  6. J.H. Duyzer, G.M. Meyer, R.M. Van Aalst, Measurement of dry deposition velocities of NO, NO2 and O3 and the influence of chemical reactions, Atmos. Environ. 17 (1983) (2117).

    Article  Google Scholar 

  7. B. Broder, H.A. Gygax, The influence of locally induced wind systems on the effectiveness of nocturnal dry deposition of ozone, Atmos. Environ. 19 (1985) (1627).

    Article  Google Scholar 

  8. I. Colbeek, R.M. Harrison, Dry deposition of ozone: some measurements of deposition velocity and of vertical profiles to 100 metres, Atmos. Environ. 19 (1985) (1807).

    Article  Google Scholar 

  9. M.L. Wesely, J.A. Eastman, D.H. Stedman, E.D. Yalvac, An eddy-correlation measurement of NO2 flux to vegetation and comparison to O3 flux, Atmos. Environ. 16 (1982) (815).

    Article  Google Scholar 

  10. N.H. Neumann, G. Den Hartog, Eddy-correlation of atmospheric fluxes of ozone, sulphur, and particulates during the Champaign Intercomparison Study, J. Geophys. Res. 90 (1985) (2097).

    Article  Google Scholar 

  11. J.G. Droppo, Concurrent measurements of ozone dry deposition using eddycorrelation and profile flux methods, J. Geophys. Res. 90 (1985) (211).

    Article  Google Scholar 

  12. A.C. Delany, D.R. Fitzjarrald, D.H. Lenschow, R. Pearsonjr., G.J. Wendel, B. Woodruff., Direct measurements of nitrogen oxides and ozone fluxes over grassland, J. Atmos. Chem. 4 (1986) (429).

    Article  Google Scholar 

  13. B.B. Hicks, D.R. Matt, R.T. McMillan, A micrometeorological investigation of surface exchange of O3, SO2 and NO2: a case study, Boundary Layer Meteorol. 47 (1989) (321).

    Article  Google Scholar 

  14. H. Giisten, G. Heinrich, R.W.H. Schmidt, U. Schurath, A novel ozone sensor for direct flux measurements, Ozone Symposium, Charlotteville, 1992.

    Google Scholar 

  15. W.J. Massman, Partitioning ozone fluxes to sparse grass and soil and the inferred resistances to dry deposition, Atmos. Environ. 27A (1993) (167–174).

    Google Scholar 

  16. A. Poggi, Introduction à la micrométéorologie, Masson, Paris 1977.

    Google Scholar 

  17. R.B. Stull, An introduction to boundary layer meteorology, Kluwer, Dordrecht 1988.

    Book  Google Scholar 

  18. A.C. Chamberlain, R.C. Chadwick, Deposition of airborne radioiodine vapour, Nucleonics 11(8) (1953) 22.

    Google Scholar 

  19. J.L. Montheith, Evaporation and surface temperature, Quart. J. Roy. Met. Soc. 107 (1981) (1).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cieslik, S., Labatut, A. (1997). Ozone Deposition on Various Surface Types. In: Slanina, S. (eds) Biosphere-Atmosphere Exchange of Pollutants and Trace Substances. Transport and Chemical Transformation of Pollutants in the Troposphere, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03394-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03394-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08273-3

  • Online ISBN: 978-3-662-03394-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics