Skip to main content

Transfer of Ultraviolet Light in the Atmosphere and Ocean: A Tutorial Review

  • Conference paper
Solar Ultraviolet Radiation

Part of the book series: NATO ASI Series ((ASII,volume 52))

Abstract

Penetration of UV radiation through the atmosphere depends on atmospheric ozone and particulate matter in the form of clouds and aerosols. Ozone absorbs strongly in the ultraviolet part of the spectrum and weakly in the visible. Particulate clouds interact significantly with solar radiation throughout the UV and visible region. In the ultraviolet spectral range scattering by atmospheric molecules is also important because of the inverse fourth power dependence of molecular (Rayleigh) scattering on wavelength. The total amount of molecules in the atmosphere above a given location varies relatively little with time, whereas the ozone amount can vary significantly from day to day, and cloud cover varies on much shorter time scales. Thus, the amount of UV and visible radiation available at any level in the atmosphere and at the surface is to a large extent controlled by variations in column ozone amount and cloud conditions. The transfer of radiation through aquatic media is quite similar to radiation transfer in the atmosphere. The water molecules give rise to absorption, and Rayleigh (molecular) scattering arises from density fluctuations. In addition, particulate matter in the ocean, due to dissolved organic and inorganic matter, scatter and absorb radiation in much the same way aerosol and cloud ‘particles’ do in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. E. Jr., and S. A. Lloyd (1990) Polar Twilight UV-Visible Radiation Field: Perturbations Due to Multiple Scattering, Ozone Depletion, Stratospheric Clouds and Surface Albedo, J. Geophys. Res., 95, 7429–7434

    Google Scholar 

  • Bruhl, C., and P. J. Crutzen (1989) On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation, Geophys. Res. Lett., 16, 703

    Google Scholar 

  • Blumthaler M. and W. Ambach (1990): Indication of increasing solar ultraviolet-B radiation flux in Alpine regions, Science, 248, 206–208

    Article  CAS  Google Scholar 

  • Chandrasekhar, S. (1960) Radiative Transfer, Dover, New York.

    Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G. (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature, 326, 655

    Article  CAS  Google Scholar 

  • Dahlback, A., T. Henriksen, S.H.H. Larsen and K. Stamnes (1989) Biological UV-doses and the effect of an ozone layer depletion, Photochemistry and Photobiology, 49, 621–625

    Article  CAS  Google Scholar 

  • Da.hlba.ck, A. and K. Stamnes (1991) A new spherical model for computing the radiation field available for photolysis and heating at twilight, Planet. Space Sci., 39, 671–683

    Google Scholar 

  • El-Sayed, S. Z., F. C. Stephens, R. R. Bidigard, and M. E. Ondrusek (1990) Effect of ultraviolet on antarctic marine phytoplankton, In: Antarctic Ecosystems, Ecological Change and Conservation (edited by K. R. Kerry, and G. Hempel) Springer-Verlag, 379–385

    Google Scholar 

  • Jin, Z., and K. Stamnes (1994) Radiative transfer in nonuniformly refracting media such as the atmosphere/ocean system, Appl. Opt., 33, 431–442

    Google Scholar 

  • Gordon, H. R., A. Y. and Morel (1983) Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review, Springer Verlag.

    Book  Google Scholar 

  • Hader, D. P., R. C. Worrest, and H. D. Kumpar (1991) Aquatic Ecosystems, Environmental Effects of Ozone Depletion: 1991 update, 33

    Google Scholar 

  • Karentz, D. (1988) DNA repair mechanisms in Antarctic marine organisms, Antarctic J. of the U. S., 23, 114

    Google Scholar 

  • Kylling, A. (1994) UVSPEC: A program for calculation of diffuse and direct UV and visible fluxes on horizontal surfaces, available by anonymous ftp to kaja.gi.alaska.edu, cd pub/arve

    Google Scholar 

  • Kylling, A., K. Stamnes, R. R. Meier, and D. E. Anderson (1993) The 200–300 nm radiation field in the stratosphere: Comparison between theory and experiment, J. Geophys. Res., 98, 2741–2745

    Google Scholar 

  • Kylling, A., K. Stamnes, and S. C. Tsay (1995) A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of accuracy in realistic layered media, J. Atmos. Chem., 21, 115–150

    Google Scholar 

  • Lenoble, J. (ed.) (1985) Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, A. Deepak Publishing, Hampton, VA

    Google Scholar 

  • Lubin, D., Frederick, J. E., Booth, C. R., Lucas, T. and Neuschuler, D. (1989) Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica, Geophys. Res. Lett., 16, 783

    Google Scholar 

  • Mobley, C. D. (1994) Light and water; Radiative Transfer in Natural Waters, Academic Press, San Diago

    Google Scholar 

  • Mobley, C. D., B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn (1993) Comparison of numerical models for computing underwater light fields, Appl. Opt., 32, 7484–7504

    Google Scholar 

  • Molina, L. T., and M. J. Molina (1986) Absolute absorption cross section of ozone in the 185–350 nm wavelength range, J. Geophys. Res., 91, 14501

    Google Scholar 

  • Nakajima and Tanaka (1983) Effect of wind-generated waves on the transfer of solar radiation in the atmosphere-ocean system, J. Quant. Spectrosc. Radiat. Transfer, 29, 521–537

    Google Scholar 

  • Plass, G., T. Humphreys, and G. Kattawar (1981) Ocean-atmosphere interface: its influence on radiation, Appl. Opt., 20, 917–931

    Google Scholar 

  • Roy, C. R., Gies, H. P., and Elliot, G. (1990) Ozone depletion, Nature, 347, 235

    Article  Google Scholar 

  • Smith, R. C., and K. S. Baker (1989) Stratospheric ozone, middle ultraviolet radiation and phytoplankton productivity, Oceanogr. Mag., 2, 4

    Google Scholar 

  • Smith, R. C., B. B. Prezelin, K. S. Baker, R. R. Bidigare, N. P. Boucher, T. Coley, D. Karentz, S. McIntyre, H. A. Matlick, D. Menzies, M. Ondrusek, Z. Wan, and K. J. Waters (1992) Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters, Science, 255, 952–959

    Google Scholar 

  • Stamnes, K. (1986) The theory of multiple scattering of radiation in plane parallel atmospheres, Rev. Geophys., 24, 299–310

    Google Scholar 

  • Stamnes, K., S.-C. Tsay, W.J. Wiscombe and K. Jayaweera (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Applied Optics, 27, 2502–2509

    Article  CAS  Google Scholar 

  • Sta.mnes, K., Z. Jin, J. Slusser, C. R. Booth, and T. Lucas (1992) Several-fold enhancement of biologically effective ultraviolet radiation at McMurdo Station Antarctica during the 1990 ozone hole, Geophys. Res. Lett., 19, 1013–1016

    Google Scholar 

  • Thomas, G. E. and K. Stamnes (1996) Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, in press

    Google Scholar 

  • Tsay, S. -C., and K. Stamnes (1992) Ultraviolet radiation in the Arctic: The impact of potential ozone depletions and cloud effects, J. Geophys. Res., 97, 7829–7840

    Google Scholar 

  • Wang, P. and J. Lenoble (1994) Comparison between measurements and modelling of UV-B irradiance for clear sky — a case study, Appl. Opt., 33, 3964–3971

    Google Scholar 

  • Wiscombe, W. J. (1977) The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions, J. Atmos. Sci.

    Google Scholar 

  • Worrest, R. C. (1986) The effect of solar UV-B radiation on aquatic systems: An overview, Effects of Changes in Stratospheric Ozone and Global Climate, Overview, J. G. Titus (ed.), U. S. Environmental Protection Agency and United Nations Environmental Program, 1, 175

    Google Scholar 

  • Zeng, J., Z. Jin, and K. Stamnes (1993) Impact of stratospheric ozone depletion on UV penetration into the ocean at high latitudes, in Underwater Light Measurements, H. Chr. Eilertsen (Editor), Proc. SPIE 2048, 56–53

    Google Scholar 

  • Zeng, J., R. McKenzie, K. Stamnes, M. Wineland, and J. Rosen (1994) Measured UV spectra compared with discrete ordinate method simulations, J. Geophys. Res., 99, 23019–23030

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stamnes, K. (1997). Transfer of Ultraviolet Light in the Atmosphere and Ocean: A Tutorial Review. In: Zerefos, C.S., Bais, A.F. (eds) Solar Ultraviolet Radiation. NATO ASI Series, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03375-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03375-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08300-6

  • Online ISBN: 978-3-662-03375-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics