Social Science Simulation — Origins, Prospects, Purposes

  • Klaus G. Troitzsch
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 456)

Abstract

This paper is about some history and some future development of computer simulation (Ostrom’s Third Symbol System) in the social sciences, as opposed to mathematical modelling (Ostrom’s Second Symbol System). Statistical modelling is mainstream, but it so often forgets about the process character of social life, whereas simulation often forgets about data. Concept driven simulation is defended, but data driven simulation is also pleaded for, taking into account that understanding a social process must precede its prediction.

Keywords

Stratification Defend Univer Wolfram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, Robert P., and A Bernstein. A computer simulation of community referendum controversies. Public Opinion Quarterly, 27 (1): 93–122, 1963.CrossRefGoogle Scholar
  2. Abelson, Robert P. Simulation of social behavior. In G. Lindzey and Elliot Aronson, editors, Handbook of Social Psychology, volume 2, pages 274–356. Addison-Wesley, Reading MA, 1968.Google Scholar
  3. Abelson, Robert P., and J. Douglas Carroll. Computer simulation of individual belief systems. American Behavioral Scientist, 8: 24–30, 1965.Google Scholar
  4. Alker Jr, Hayward R. Computer simulations: Inelegant mathematics and worse social science? International Journal of Mathematical Education in Science and Technology, 5: 139–155, 1974.CrossRefGoogle Scholar
  5. Brockwell, Peter J., and Richard A. Davis. Time Series: Theory and Methods. Springer, New York etc., 1987.Google Scholar
  6. Bunge, Mario. Ontology I: The Furniture of the World. Treatise on Basic Philosophy, Vol. 3. Reidel, Dordrecht, Boston, London, 1977.Google Scholar
  7. Casti, John L. Would-Be Worlds. How Simulation Is Changing the Frontiers of Science. Wiley, New York etc., 1996.Google Scholar
  8. Doran, Jim, and G. Nigel Gilbert, editors. Simulating Societies: the Computer Simulation of Social Phenomena. University of London College Press, London, 1994.Google Scholar
  9. Gilbert, Nigel, and Rosaria Conte, editors. Artificial Societies: the Computer Simulation of Social Life. University of London College Press, London, 1995.Google Scholar
  10. Gottman, John M. Time Series Analysis. A Comprehensive Introduction for Social Scientists. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1981.Google Scholar
  11. Hayek, Friedrich A. Scientism and the study of society. Economica, 9, 10, 11:267–291, 34–63, 27–39, resp., 1942, 1943, 1944.Google Scholar
  12. Hegselmann, Rainer. Cellular automata in the social sciences. perspectives, restrictions, and artefacts. In Rainer Hegselmann, Ulrich Mueller, and Klaus G. Troitzsch, editors, Modelling and Simulation in the Social Sciences from a Philosophy of Science Point of View, Theory and Decision Library, Series A: Philosophy and Methodology of the Social Sciences, pages 209–230. Kluwer, Dordrecht, Boston, 1996.Google Scholar
  13. Hegselmann, Rainer, Ulrich Mueller, and Klaus G. Troitzsch. Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View, volume 23 of Theory and Decision Library, Series A: Philosophy and Methodology of the Social Sciences. Kluwer, Dordrecht, Boston, London, 1996.Google Scholar
  14. Hegselmann, Rainer, Andreas Flache, and Volker Möller. Solidarity and social impact in cellular worlds: results and sensitivity analysis. In Ramzi Suleiman, Klaus G. Troitzsch, Nigel Gilbert, and Ulrich Mueller, editors, Social Science Microsimulation: Tools for Modeling, Parameter Optimization, and Sensitivity Analysis. Springer, Heidelberg etc., 1998. (forthcoming).Google Scholar
  15. Henize, John. Critical issues in evaluating socio-economic models. In Tuncer I. Ören, Bernard P. Zeigler, and Maurice S. Elzas, editors, Simulation and Model-Based Methodologies: An Integrative View, NATO Advanced Science Institutes Series, Series F: Computer and Systems Science, vol. 10, pages 557–590. Springer, Berlin, Heidelberg, New York, Tokyo, 1984.Google Scholar
  16. Latané, Bibb. Dynamic social impact. robust predictions from simple theory. In Rainer Hegselmann, Ulrich Mueller, and Klaus G. Troitzsch, editors, Modelling and Simulation in the Social Sciences from a Philosophy of Science Point of View, Theory and Decision Library, Series A: Philosophy and Methodology of the Social Sciences, pages 287–310. Kluwer, Dordrecht, Boston, 1996.Google Scholar
  17. Orcutt, Guy H., Joachim Merz, and Hermann Quinke, editors. Microanalytic simulation models to support social and financial policy. Information Research and Resource Reports, vol. 7. North Holland, Amsterdam, New York, Oxford, 1986. Ostrom, Thomas. Computer simulation: The third symbol system. Journal of Experimental Social Psychology, 24: 381–392, 1988.CrossRefGoogle Scholar
  18. Richardson, Lewis F. War moods. Psychometrika, 13:147–174, 197–232, 1948. Sola Pool, Ithiel de, and Robert Abelson. The simulmatics project. In Harold Guetzkow, ed., Simulation in Social Science: Readings, pages 70–81. Prentice Hall, Englewood Cliffs, 1962. originally in: Public Opinion Quarterly 25, 1961, 167–183.Google Scholar
  19. Troitzsch, Klaus G., and Ulrich Mueller, G. Nigel Gilbert, and Jim E. Doran, editors. Social Science Microsimulation. Springer, Berlin. Heidelberg, New York, 1996. Troitzsch, Klaus G. Chaotic behaviour in social systems. In Rainer Hegselmann andGoogle Scholar
  20. Heinz-Otto Peitgen, editors, Modelle sozialer Dynamiken. Ordnung, Chaos und Komplexität, pages 162–186. Hölder—Pichler—Tempsky, Wien, 1996.Google Scholar
  21. Weidlich, Wolfgang, and Günter Haag. Concepts and Models of a Quantitative Sociology. The Dynamics of Interacting Populations. Springer Series in Synergetics, vol. 14. Springer, Berlin, Heidelberg, New York, 1983.Google Scholar
  22. Wolfram, Stephen. Preface. Physica D, 10D(1 and 2):vii—xii, 1984.Google Scholar
  23. Wolfram, Stephen. Universality and complexity in cellular automata. Physica D, 10D (1 and 2): 1–35, 1984.CrossRefGoogle Scholar
  24. Zeigler, Bernard R. Theory of modelling and simulation. Krieger, Malabar, 1985. Reprint, originally published: New York (Wiley ) 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Klaus G. Troitzsch
    • 1
  1. 1.Institut für Sozialwissenschaftliche Informatik, Fachbereich InformatikUniversität Koblenz-LandauKoblenzGermany

Personalised recommendations