Human Genetics pp 361-383 | Cite as

Gene Action: Developmental Genetics

  • Friedrich Vogel
  • Arno G. Motulsky


Biochemical and molecular genetics has taught us much about the structure of genes and about the genetic control of enzymes and functional proteins. The lessons regarding the genetic basis of embryonic development, however, have been much less satisfactory. The genetics of development is only beginning to be charted on the map of our knowledge of molecular genetic mechanisms, but studies with methods from molecular genetics are now starting to elucidate this field. As in other fields of molecular biology, developmental genetics often uses experimental organisms other than humans because human experimentation is subject to obvious limitations. A textbook of human genetics cannot review the whole field. A broad outline is sketched below, indicating where observations on humans may contribute some additional information. Developmental genetics is historically based on classical developmental mechanics (Entwicklungsmechanik) and developmental physiology, which flourished in the first decades of the twentieth century, based on the work of Roux, Driesch, Spemann, Kühn, Waddington, and Hadorn.


Down Syndrome Transgenic Animal Chromosome Aberration Homeobox Gene Myotonic Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298: 240–244PubMedCrossRefGoogle Scholar
  2. 2.
    Andreadis A, Gallego ME, Nadal-Ginard B (1987) Generation of protein isoform diversity by alternative splicing. Annu Rev Cell Biol 3: 207–242PubMedCrossRefGoogle Scholar
  3. 3.
    Angelman H (1965) “Puppet” children: a report on three cases. Dev Med Child Neurol 7: 681–683Google Scholar
  4. 4.
    Bacchus C, Sterz H, Buselmaier Wet al (1987) Genesis and systematization of cardiovascular anomalies and analysis of skeletal malformations in murine trisomy 16 and 19. Hum Genet 77: 12–22PubMedCrossRefGoogle Scholar
  5. 5.
    Baldwin CT, Hoth CF, Amos JA et al (1992) An exonic mutation in the HuP2 paired domain gene causes Waardenburg’s syndrome. Nature 355: 637–638PubMedCrossRefGoogle Scholar
  6. 6.
    Borgaonkar DS (1989) Chromosomal variation in man. A catalogue of chromosomal variants and anomalies, 5th edn. Liss, New YorkGoogle Scholar
  7. 7.
    Britten RJ, Davidson EH (1969) Gene regulation for higher cells. A theory. Science 165: 349–357PubMedCrossRefGoogle Scholar
  8. 8.
    Butler MG, Meany FJ, Palmer CG (1986) Clinical and cytogenetic survey of 39 individuals with Prader-LabhartWilli syndrome. Am J Med Genet 23: 793–809PubMedCrossRefGoogle Scholar
  9. 9.
    Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315: 496–498PubMedCrossRefGoogle Scholar
  10. 10.
    Chandley AC (1991) On the parental origin of de novo mutation in man. J Med Genet 28: 217–223PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper DN, Krawczak M (1993) Human gene mutation. Bios Scientific, OxfordGoogle Scholar
  12. 12.
    Cremer T, Kurz A, Zirbel R et al (1994) The role of chromosome territories in the functional compartimentalization of the cell nucleus. Cold Spring Harbor Symp Quant Biol 58: 777–792CrossRefGoogle Scholar
  13. 13.
    Davidson EH, Britten RJ (1973) Organisation, transcription and regulation in the animal genome. Q Rev Biol 48: 565–613PubMedCrossRefGoogle Scholar
  14. 14.
    Davidson EH, Britten RJ (1979) Regulation of gene expression: possible role of repetitive sequences. Science 204: 1052–1059PubMedCrossRefGoogle Scholar
  15. 15.
    Driever W, Nuesslein-Volhard (1988) A gradient of biocin protein in Drosophila embryos. Cell 54: 83–93CrossRefGoogle Scholar
  16. 16.
    Engel W (1982) Geschlechtsdifferenzierung und ihre Störungen. Verh Dtsch Ges Pathol 66: 329–343PubMedGoogle Scholar
  17. 17.
    Epstein CJ (1985) Mouse monosomies and trisomies as experimental systems for studying mammalian aneuploidy. Trends Genet 1: 129–134CrossRefGoogle Scholar
  18. 18.
    Epstein CJ (1986) The consequences of chromosome imbalance. Principles, mechanisms and models. Cambridge University Press, New YorkGoogle Scholar
  19. 19.
    Epstein CJ (1989) Down’s syndrome (trisomy 21) In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 291–341Google Scholar
  20. 20.
    Epstein CJ (1990) The consequences of chromosome imbalance. Am J Med Suppl 7: 31–37Google Scholar
  21. 20a.
    Epstein CJ (1995) The new dysmorphology: application of insights from basic developmental biology to the understanding of human birth defects. Proc Natl Acad Sci USA 92 (19): 8566–8573PubMedCrossRefGoogle Scholar
  22. 21.
    Epstein CJ, Avraham KB, Lovett M et al (1987) Transgenic mice with increased Cu/Zn-superotide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci USA 84: 8044–8048PubMedCrossRefGoogle Scholar
  23. 22.
    Fuhrmann W (1993) Humangenetische Aspekte der angeborenen Fehlbildingen des Herzens und der großen Gefäße. In: Doerr W, Seifert G (eds) Pathologische Anatomie des Herzens und seiner Hüllen. Springer, Berlin Heidelberg New York, pp 519–548 (Spezielle pathologische Anatomie, vol 22/1)Google Scholar
  24. 23.
    Ganten D, Wagner J, Zeh K et al (1992) Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensin genes. Proc Natl Acad Sci USA 89: 7806–7810PubMedCrossRefGoogle Scholar
  25. 24.
    Garrod AE (1923) Inborn errors of metabolism. Frowde, London (Reprinted 1963 by Oxford University Press, London)Google Scholar
  26. 25.
    Gehring WS (1985) The homeo box: a key to the understanding of development? Cell 40: 3–5PubMedCrossRefGoogle Scholar
  27. 26.
    Goldschmidt RB (1935) Gen and Außeneigenschaft (Untersuchungen an Drosophila) I. and II. Mitt Z Vererbungslehre 10: 74–98Google Scholar
  28. 27.
    Gordon JF, Ruddle FH (1981) Integration and stable germ line transmission of genees injected into mouse pronudei. Science 214: 1244–1246PubMedCrossRefGoogle Scholar
  29. 28.
    Graessmann A (1993) Transgene Tiere. Aus Forschung and Medizin 8: 49–56Google Scholar
  30. 29.
    Graham A, Papalopulu N, Krumlaut R (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57: 367–378PubMedCrossRefGoogle Scholar
  31. 30.
    Griffin JE, Wilson JD (1989) The androgen resistance syndroms. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 1919–1944Google Scholar
  32. 31.
    Grubbay J, Collignon J, Koopman P et al (1990) A gene mapping to the sex-determining region of the mouse 4 chromosome is a member of a novel family of embryonically expressed genes. Nature 346: 245–250CrossRefGoogle Scholar
  33. 32.
    Grüneberg H (1952) Genetical studies in the skeleton of the mouse. IV. Quasi-continuous variations. J Genet 51: 95–114CrossRefGoogle Scholar
  34. 33.
    Gruss P, Walther C (1992) Pax in development. Cell 69: 719–722PubMedCrossRefGoogle Scholar
  35. 34.
    Hall JG (1990) Genomic imprinting: review and relevance to human diseases. Am J Hum Genet 46: 857–873PubMedGoogle Scholar
  36. 35.
    Hall JG (1992) Genomic imprinting and its clinical implications (editorial; comment). N Engl J Med 326 (12): 827–829PubMedCrossRefGoogle Scholar
  37. 36.
    Harper PS (1975) Congenital myotonic dystrophy in Britain. II. Genetic basis. Arch Dis Child 50: 514–521PubMedCrossRefGoogle Scholar
  38. 37.
    Hayashi S, Scott MP (1990) What determines the specificity of action of drosophila homeodomain proteins? Cell 63: 883–894PubMedCrossRefGoogle Scholar
  39. 38.
    Jacob F (1978) Mouse teratocarcinoma and mouse embryo. The Leuwenhoek lecture 1977. Proc R Soc Lond [Biol] 201: 249–270Google Scholar
  40. 39.
    Jacob F, Monod J (1961) On the regulation of gene activity. Cold Spring Harbor Symp Quant Biol 26: 193–209CrossRefGoogle Scholar
  41. 40.
    Jaenisch R (1989) Transgenic animals. Science 240: 1468–1474CrossRefGoogle Scholar
  42. 41.
    Jandl JH, Cooper RA (1978) Hereditary spherocytosis. In: Stanbury JB, Wyngaarden JB, Fredrickson DS (eds) The metabolic basis of inherited disease, 4th edn. McGraw-Hill, New York, pp 1396–1409Google Scholar
  43. 42.
    Jost JP, Saluz HP (eds) (1993) DNA methylation: molecular biology and biological significance. Birkhäuser, BaselGoogle Scholar
  44. 43.
    Kessel M, Gruss P (1990) Murine developmental control genes. Science 249: 375–379CrossRefGoogle Scholar
  45. 44.
    Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissue. Hum Genet 26: 231–243Google Scholar
  46. 45.
    Knippers R, Philippsen P, Schafer KP, Fanning E (1990) Molekulare Genetik, 5th edn. Thieme, StuttgartGoogle Scholar
  47. 46.
    Knoll JHM, Nicholls RD, Magenis RE et al (1989) Angel-man and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the delition. Am J Med Genet 32: 285–290PubMedCrossRefGoogle Scholar
  48. 47.
    Knussmann R (1973) Unterschiede zwischen Mutter-Kind-and Vater-Kind-Korrelationen im Hautleistensystem des Menschen. Hum Genet 19: 145–154CrossRefGoogle Scholar
  49. 48.
    Koopman P, Gubbay J, Vivian N et al (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351: 117–121PubMedCrossRefGoogle Scholar
  50. 48.
    a. Korenberg JR, Chen XN, Schipper R, Sun Z, Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P, Disteche C et al (1994) Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc Natl Acad Sci USA 91 (11): 4997–5001PubMedCrossRefGoogle Scholar
  51. 49.
    Kukharenko VI, Kuliev AM, Grinberg KN, Terskikh VV (1974) Cell cycles in human diploid and aneuploid strains. Hum Genet 24: 285–296CrossRefGoogle Scholar
  52. 50.
    Kuliev AM, Kukharenko VI, Grinberg KN, Vasileysky SS, Terskikh VV, Stephanova LG (1973) Morphological, auto-radiographic, immunochemical and cytochemical investigation of a cell strain with trisomy 7 from a spontaneous abortion. Hum Genet 17: 285–296Google Scholar
  53. 51.
    Kuliev AM, Kukharenko VI, Grinberg KN, Terskikh VV, Tamarkina AD, Begomazov EA, Vasileysky SS (1974) Investigation of a cell strain with trisomy 14 from a spontaneously aborted human fetus. Hum Genet 21: 1–12CrossRefGoogle Scholar
  54. 52.
    Kuliev AM, Kukharenko VI, Grinberg KN, Mikhailov AT, Tamarkina AD (1975) Human triploid cell strain. Phenotype on cellular level. Hum Genet 30: 127–134CrossRefGoogle Scholar
  55. 53.
    Kurnit DM, Alridge JF, Matsuoka R, Matthyse S (1985) Increase adhesiveness of trysomy 21 cells and atrioventricular canal malformations in Down’s syndrome. A stochastic model. Am J Med Genet 20: 385PubMedCrossRefGoogle Scholar
  56. 54.
    Landauer W (1957) Phenocopies and genotype with special reference to sporadically occurring developmental variants. Am Nat 91: 79–90CrossRefGoogle Scholar
  57. 55.
    Lawler SD, Povey S, Fisher RA, Pickthal VJ (1982) Genetic studies on hydatidiform moles. II. The origin of complete moles. Ann Hum Genet 46: 209–222PubMedCrossRefGoogle Scholar
  58. 56.
    Ledbetter DH, Riccardi VM, Airhard SD et al (1981) Deletion of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med 304: 325–329PubMedCrossRefGoogle Scholar
  59. 57.
    Lorenz K (1952) King Salomon’s ring. Crowell, New YorkGoogle Scholar
  60. 58.
    Lovell-Badge R (1992) Testis determination: soft talk and kinky sex. Curr Opin Genet Dev 2: 596–601PubMedCrossRefGoogle Scholar
  61. 59.
    Magnuson T, Epstein CJ (1981) Genetic control of very early mammalian development. Biol Rev 56: 369–408PubMedCrossRefGoogle Scholar
  62. 60.
    Manuelidis L, Borden J (1988) Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 96: 397–410PubMedCrossRefGoogle Scholar
  63. 61.
    McGinnies W, Krumlaut R (1992) Homeobox genes and axial patterning. Cell 68: 283–302CrossRefGoogle Scholar
  64. 62.
    McKusick VA (1995) Mendelian inheritance in man, 11th edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  65. 63.
    Morris JM (1953) The syndrome of testicular feminization in male pseudohermaphrodites. Am J Obstet Gynecol 65: 1192PubMedGoogle Scholar
  66. 64.
    Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344: 541–544PubMedCrossRefGoogle Scholar
  67. 65.
    Noyer-Weidner M, Trautner TA (1993) Methylation of DNA in prokaryotes. In: Jost JP, Saluz HP (eds) DNA methylation: biology and biological significance. Birkhäuser Verlag, Basel, pp 39–108CrossRefGoogle Scholar
  68. 66.
    Nuesslein-Volhard C, Frohnhoefer HG, Lehmann R (1987) Determination of anteroposterior polarity in Drosophila. Science 238: 1675–1681CrossRefGoogle Scholar
  69. 67.
    Opitz JM (1985) The developmental field concept. Am J Med Genet 21: 1–11PubMedCrossRefGoogle Scholar
  70. 68.
    Prader A, Labhart A, Willi H (1956) Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus and Oligophrenie nach myotonieartigem Zustand im Neugeborenenalter. Schweiz Med Wochenschr 86: 1260–1261Google Scholar
  71. 69.
    Reed T, Young RS (1982) Maternal effects in dermatoglyphics: similarities from twin studies among palmar, plantar and fingertip variables. Am J Hum Genet 34: 349–352PubMedGoogle Scholar
  72. 70.
    Reik W (1989) Genomic imprinting and genetic disorders in man. Trends Genet 5: 331–336PubMedCrossRefGoogle Scholar
  73. 71.
    Ridley RM, Frith CD, Crow TJ, Conneally PM (1988) Anticipation in Huntington’s disease is inherited through the male line but may originate in the female. J Med Genet 25: 589–595PubMedCrossRefGoogle Scholar
  74. 72.
    Schinzel A (1984) Catalogue of unbalanced chromosome aberrations in man. De Gruyter, BerlinGoogle Scholar
  75. 73.
    Schinzel A (1993) Genomic imprinting: consequences of uniparental disomy for human disease. Am J Med Genet 46: 583–684Google Scholar
  76. 74.
    Searle AG, Peters J, Lyon MF et al (1989) Chromosome maps of man and mouse IV. Ann Hum Genet 53: 89–140PubMedCrossRefGoogle Scholar
  77. 75.
    Sinclair AH, Berta P, Palmer MS et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240–244PubMedCrossRefGoogle Scholar
  78. 76.
    Snouwaert JN, Brigman KK, Latour AM et al (1992) An animal model for cystic fibrosis made by gene targeting. Science 257: 1083–1088PubMedCrossRefGoogle Scholar
  79. 77.
    Solter D (1988) Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet 22: 127–146PubMedCrossRefGoogle Scholar
  80. 78.
    Spranger J, Benirschke K, Hall JG et al (1982) Errors of morphogenesis: concepts and terms. J Pediatr 100: 160–165PubMedCrossRefGoogle Scholar
  81. 79.
    Taliaferro WH, Huck JG (1923) The inheritance of sickle cell anaemia in man. Genetics 8: 594PubMedGoogle Scholar
  82. 80.
    Tiepolo L, Zuffardi O (1976) Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y-chromosome long arm. Hum Genet 34: 119–124PubMedCrossRefGoogle Scholar
  83. 81.
    Ton CCT, Hirvonen H, Miwa H et al (1991) Positional cloning and characterization of a paired box-and homeoboxcontaining gene from the aniridia region. Cell 33: 1059–1074CrossRefGoogle Scholar
  84. 82.
    Vogel T, Klose J (1992) Two-dimensional electrophoretic protein patterns of reciprocal hybrids of the mouse strains DBA and C57BL. Biochem Genet 30: 649–662PubMedCrossRefGoogle Scholar
  85. 83.
    Vogt P (1992) Y chromosome function in spermatogenesis. In: Nieschlag E, Habenicht U-F (eds) Spermatogenesis, fertilization, contraception. Molecular, cellular and endocrine events in male reproduction. Springer, Berlin Heidelberg New York, pp 225–265Google Scholar
  86. 84.
    Vogt P, Keil R, Koehler M et al (1991) Selection of DNA-sequences from interval 6 of the human Y-chromosome with homology to a Y chromosomal fertility gene sequence of Drosophila hydei. Hum Genet 86: 341–349PubMedCrossRefGoogle Scholar
  87. 85.
    Vogt P, Chandley AC, Hargreave TB et al (1992) Microdeletions in interval 6 of the Y-chromosome of males with idiopathic sterility point to disruption of AZF, a human spermatogenesis gene. Hum Genet 89: 491–496PubMedCrossRefGoogle Scholar
  88. 86.
    Vogt P, Chandley AC, Keil R et al (1993) The AZF-function of the human Y-chromosome during spermatogenesis. Chromosomes Today 20: 227–239CrossRefGoogle Scholar
  89. 87.
    Watson JD, Hopkins NH, Roberts JW et al (1987) Molecular biology of the gene, 4th edn. Benjamin/Cummings, Menlo ParkGoogle Scholar
  90. 88.
    Watson JD, Gilman M, Witkowski J, Zoller M (1992) Recombinant DNA, 2nd edn. Freeman, New YorkGoogle Scholar
  91. 89.
    Wilkins L (195o) The diagnosis and treatment of endocrine disorders in childhood and adolescence. Thomas, SpringfieldGoogle Scholar
  92. 90.
    Wilson GN, Hall JG, de la Cruz F (1993) Genomic imprinting: summary of an NICHD conference. Am J Med Genet 46: 675–680PubMedCrossRefGoogle Scholar
  93. 90.
    Wolf U (1995) The molecular genetics of human sex determination. J Mol Med 73: 325–331PubMedCrossRefGoogle Scholar
  94. 91.
    Wright S (1934) The results of crosses between inbred strains of guinea pigs differing in number of digits. Genetics 19: 537–551PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Friedrich Vogel
    • 1
  • Arno G. Motulsky
    • 2
  1. 1.Institut für Humangenetik und AnthropologieHeidelbergGermany
  2. 2.Division of Medical Genetics, School of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations