Advertisement

Human Genetics pp 457-493 | Cite as

Mutation: Induction by Ionizing Radiation and Chemicals

  • Friedrich Vogel
  • Arno G. Motulsky

Abstract

Public Interest in Induced Mutation. The preceding chapter discussed spontaneous mutations. “Spontaneous” here means that these mutations are unpredictable and without known cause, even though we know that some conditions — such as parental age — may enhance the probability of mutation. This probability increases under the influence of certain agents, such as energy-rich radiation and a number of chemicals. Since human beings in their normal environments are exposed to a variety of these agents, research on induced mutation is receiving more and more attention from the general public. Relatively large amounts of money have been allotted to this work, and scientists are expected to advise political authorities as to protective measures. In regard to radiation-induced mutations, an appropriate return from these investments has been forthcoming for a number of years. The World Health Organization, the International Commission on Radiation Protection (ICRP), the United States National Academy of Sciences, and other influential organizations have established expert groups and, with their help, have published estimates of genetic risks. There are still many gaps in our knowledge, particularly regarding the effect of low-level radiation on humans but a fairly coherent picture of the radiation threat is now emerging. Relatively little is known about the possible impact of environmentally induced mutations by chemicals.

Keywords

Germ Cell Mutation Rate Down Syndrome Chromosome Aberration Atomic Bomb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altland K, Kaempfer M, Forssbohm M, Werner W (1982) Monitoring for changing mutation rates using blood 22. samples submitted for PKU screening. In: Bonaiti-Pellié C, et al (eds) The unfolding genome. Liss, New York, 23. pp 277–287 (Human genetics, part A)Google Scholar
  2. 2.
    Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/ mammalian microsome mutagenicity test. Mutat Res 31: 347–364 24.Google Scholar
  3. 3.
    Ames BN, Profet M, Gold LS (1990) Dietary pesticides (99.99% of all natural) and nature’s chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci USA 87: 7777–7786PubMedCrossRefGoogle Scholar
  4. 4.
    Anonymous (1982–1992) Ionizing radiation: sources and biological effects. United Nations Scientific Committee 25. on the Effects of Atomic Radiation. United Nations, New YorkGoogle Scholar
  5. 5.
    Anonymous (1982) Identifying and estimating the genet- 26. is impact of chemical environmental mutagens. National Academy Press, WashingtonGoogle Scholar
  6. 6.
    Auerbach C, Robson JM (1946) Chemical production of 27. mutations. Nature 157: 302PubMedCrossRefGoogle Scholar
  7. 7.
    Barcinski MA, Abreu MC, de Almeida JCC, Naya JM, Fonseca LG, Castro LE (1975) Cytogenetic investigation 28. in a Brazilian population living in an area of high natural radioactivity. Am J Hum Genet 27: 802–806PubMedGoogle Scholar
  8. 8.
    Barthelmess A (1956) Mutagene Arzneimittel. Arzneimit- 29. telforsch 6: 157Google Scholar
  9. 9.
    Barthelmess A (1970) Mutagenic substances in the human environment. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 69–147CrossRefGoogle Scholar
  10. 10.
    Barthelmess A (1973) Erbgefahren im Zivilisationsmilieu. 30. Goldmann, MunichGoogle Scholar
  11. 11.
    Bauchinger M (1968) Chromosomenaberrationen und ihre zeitliche Veränderung nach Radium-Röntgentherapie 31. gynäkologischer Tumoren. Strahlentherapie 135: 553–564PubMedGoogle Scholar
  12. 12.
    Bloom AB (1972) Induced chromosome aberrations in man. Adv Hum Genet 3: 99–172Google Scholar
  13. 13.
    Bodmer WF, Cavalli-Sforza LL (1976) Genetics, evolution 32. and man. Freeman, San FranciscoGoogle Scholar
  14. 14.
    Brewen JG, Luippold HE (1971) Radiation-induced hu 33. man chromosome aberrations. In vitro dose-rate studies. Mutat Res 12: 305-314Google Scholar
  15. 15.
    Brewen JG, Preston RJ (1974) Cytogenetic effects of en 34. vironmental mutagens in mammalian cells and the extrapolation to man. Mutat Res 26: 297–305 35.Google Scholar
  16. 16.
    Carter CO (1977) Monogenic disorders. J Med Genet 14: 316–320PubMedCrossRefGoogle Scholar
  17. 17.
    Chen Dequing et al (1982) Cytogenetic investigation in a 36. population living in the high background radiation area. Chin J Radiol Med Protect 2: 61–63Google Scholar
  18. 18.
    Conen and Lansky (1961) Chromosome damage during nitrogen mustard therapy BMJ 1: 1055–1057Google Scholar
  19. 19.
    Cremer T, Popp S, Emmerich P et al (1990) Rapid meta-phase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization. Cytometry 11: 110–118PubMedCrossRefGoogle Scholar
  20. 20.
    Cui Yanwei (1982) Heredity diseases and congenital malformation survey in high background radiation area. Chin J Radiol Med Protect 2: 55–57Google Scholar
  21. 21.
    Czeizel A (1989) Hungarian surveillance of germinal mutations. Hum Genet 82: 359–366PubMedCrossRefGoogle Scholar
  22. 22.
    Czeizel A (1989) Population surveillance of sentinel anomalies. Mutat Res 212: 3–9PubMedCrossRefGoogle Scholar
  23. 23.
    Czeizel A, Sankaranarayanan K (1984) The load of genetic and partially genetic disorders in man. I. Congenital anomalies: estimates of detriment in terms of years of life lost and years of impaired life. Mutat Res 128: 73–103PubMedCrossRefGoogle Scholar
  24. 24.
    Czeizel A, Sankaranarayanan K, Losenci A et al (1988) The load of genetic and partially genetic diseases in man. II. Some selected common multifactorial diseases: estimates of population prevalence and of detriment in terms of years of lost and impaired life. Mutat Res 196: 259–292PubMedCrossRefGoogle Scholar
  25. 25.
    Czeizel A, Sankaranarayanan K, Szondi M (1990) The load of genetic and partially genetic diseases in man. III. Mental retardation. Mutat Res 232: 291–303Google Scholar
  26. 26.
    Deng Shaozhuang et al (1982) Birth survey in high background radiation area. Chin J Radiol Med Protection 2: 60Google Scholar
  27. 27.
    Ehling UH, Charles DJ, Favor J et al (1985) Induction of gene mutations in mice: the multiple end-point approach. Mutat Res 150: 393–401PubMedCrossRefGoogle Scholar
  28. 28.
    Ford CE, Searle AG, Evans EP, West BJ (1969) Differential transmission of translocation induced in spermatogonia of mice by X-irradiation. Cytogenetics 8: 447–470PubMedCrossRefGoogle Scholar
  29. 29.
    Ford CE, Evans EP, Searle AG (1978) Failure of irradiation to induce Robertsonian translocations in germ cells of male mice. In: Conference on mutations: their origin, nature and potential relevance to genetic risk in man. Boldt, Boppard, pp 102–108 ( Jahreskonferenz 1977, Zentrallaboratorium für Mutagenitätsprüfungen )Google Scholar
  30. 30.
    Fuhrmann W, Vogel F (1983) Genetic counseling, 3 rd edn. Springer, Berlin Heidelberg New York (Heidelberg science library 10 )CrossRefGoogle Scholar
  31. 31.
    Grüneberg H, Bains GS, Berry RJ, Riles L, Smith CAB (1966) A search for genetic effects of high natural radioactivity in South India. Mem Med Res Council (London)Google Scholar
  32. 32.
    Harris H (1980) The principles of human biochemical genetics, 4 th edn. North-Holland, AmsterdamGoogle Scholar
  33. 33.
    High Background Radiation Research Group, China (1980) Health survey in high background radiation area in China. Science 209: 877–880Google Scholar
  34. 34.
    Hollaender A (ed) (1954–1956) Radiation biology, 4 vols. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Hollaender A (ed) (1973) Chemical mutagens. Principles and methods for their detection, vol 3. Plenum, New YorkGoogle Scholar
  36. 36.
    Hook EB, Cross PK, Regal RR (1984) The frequency of 47, + 21, 47, + 18 and 47, + 13 at the uppermost extremes of maternal ages: results on 56094 fetuses studied prena-et 68: 211–220Google Scholar
  37. 37.
    Ilvin LA, Balonov MI, Buldakov LA et al (1990) Radio-contamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. J Radiol Protect 10: 3–28CrossRefGoogle Scholar
  38. 38.
    Jablon S, Kato H (1970) Childhood cancer in relation to prenatal exposure to A-bomb radiation. Lancet 2: 1000PubMedCrossRefGoogle Scholar
  39. 39.
    Kazakov VS, Demidchik EP, Astatchova LN (1992) Thyroid cancer after Tschernobyl. Nature 359: 21–22PubMedCrossRefGoogle Scholar
  40. 40.
    King RA, Rotter JI, Motulsky AG (eds) (1992) The genetic basis of common diseases. Oxford University Press, New YorkGoogle Scholar
  41. 41.
    Kochupillai N, Verma JC, Grewal MS, Ramalingaswami V (1976) Down’s syndrome and related abnormalities in an area of high background radiation in coastal Kerala. Nature 262: 60–61PubMedCrossRefGoogle Scholar
  42. 42.
    Lea DE, Catcheside DG (1942) The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. J Genet 44: 216–245CrossRefGoogle Scholar
  43. 43.
    Lejeune J, Turpin R, Rethoré MO (1960) Les enfants nés de parents irradiés (cas particuliers de la sex-ratio). 9th International Congress on Radiology, July 23–30, 1959, Munich, pp 1089–1096Google Scholar
  44. 44.
    Lu Bingxin et al (1982) Survey of hereditary ophthalmopathies and congenital ophthalmic malformations in high background areas. Chin J Radiol Med Protect 2: 58–59Google Scholar
  45. 45.
    tiers H (1955) Zur Frage der Erbschädigung durch tumortherapeutische Cytostatica. Z Krebsforsch 6o: 528Google Scholar
  46. 46.
    Lüning KG, Searle AG (1970) Estimates of the genetic risks from ionizing irradiation. Mutat Res 12: 291–304Google Scholar
  47. 47.
    Malling HV, DeSerres FJ (1973) Genetic alterations at the molecular level in X-ray induced ad-3B mutants of Neurospora crassa. Radiat Res 53: 77–87PubMedCrossRefGoogle Scholar
  48. 48.
    Mattei JF, Mattei MG, Ayme S, Siraud F (1979) Origin of the extra chromosome in trisomy 21. Hum Genet 46: 107–110PubMedCrossRefGoogle Scholar
  49. 49.
    Mayor JW (1924) The production of nondisjunction by X-rays. J Exp Zool 39: 381–432CrossRefGoogle Scholar
  50. 50.
    McCann J, Ames BN (1976) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci USA 73: 950–954PubMedCrossRefGoogle Scholar
  51. 51.
    McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72: 5133–5139Google Scholar
  52. 52.
    Modell B, Kuliev A (1990) Changing paternal age distribution and the human mutation rate in Europe. Hum Genet 86: 198–202PubMedCrossRefGoogle Scholar
  53. 53.
    Mohrenweiser HW, Branscomb EW (1989) Molecular approaches to the detection of germinal mutations in mammalian organisms including man. In: Jolies G, Cordier A (eds) New trends in genetic risk assessment. Academic, New York, pp 41–56Google Scholar
  54. 54.
    Muller HJ (1927) Artificial transmutation of the gene. Science 66: 84–87PubMedCrossRefGoogle Scholar
  55. 55.
    Mulvihill JJ, Connelly RR, Austin DF et al (1987) Cancer in offspring of long-term survivors of childhood and adolescent cancer. Lancet 2: 813–817PubMedCrossRefGoogle Scholar
  56. 56.
    Neel JV, Lewis SE (1990) The comparative radiation genetics of humans and mice. Annu Rev Genet 24: 327–362PubMedCrossRefGoogle Scholar
  57. 57.
    Neel JV, Schull WJ (1991) The children of atomic bomb survivors. A genetic study. National Academy, WashingtonGoogle Scholar
  58. 58.
    Neel JV, Tiffany TO, Anderson NG (1973) Approaches to monitoring human populations for mutation rates and genetic disease. In: Hollaender A (ed) Chemical muta-gens, vol 3. Plenum, New York, pp 105–150CrossRefGoogle Scholar
  59. 59.
    Neel JV, Mohrenweiser HW, Meisler MH (1980) Rate of spontaneous mutation of human loci encoding protein structure. Proc Natl Acad Sci USA 77: 6037–6041PubMedCrossRefGoogle Scholar
  60. 60.
    Neel JV, Satoh C, Goriki K et al (1986) The rate with which spontaneous mutation alters the electrophoretic mobility of polypeptides. Proc Natl Acad Sci USA 83: 389–393PubMedCrossRefGoogle Scholar
  61. 61.
    Neel JV, Schull WS, Awa AA (1989) Implications of the Hiroshima and Nagasaki genetic studies for the estimation of the human “doubling dose” of radiation. Genome 31: 853–859PubMedCrossRefGoogle Scholar
  62. 62.
    Newcombe HB, McGregor F (1964) Learning ability and physical wellbeing in offspring from rat populations irradiated over many generations. Genetics 50: 1065–1081PubMedGoogle Scholar
  63. 63.
    Oehlkers F (1943) Die Auslösung von Chromosomenmutationen in der Meiosis durch Einwirkung von Chemikalien. Z Induktiven Abstammungs Vererbungslehre 81: 313–341Google Scholar
  64. 64.
    Rapoport IA (1946) Carbonyl compounds and the chemical mechanism of mutation. C R Acad Sci USSR 54: 65Google Scholar
  65. 65.
    Reichert W, Buselmaier W, Vogel F (1984) Elimination of X-ray-induced chromosomal aberration in the progeny of female mice. Mutat Res 139: 87–94PubMedCrossRefGoogle Scholar
  66. 66.
    Röhrborn G (1965) Über mögliche mutagene Nebenwirkungen von Arzneimitteln beim Menschen. Hum Genet 1: 205–231CrossRefGoogle Scholar
  67. 67.
    Röhrborn G (1970) The dominant lethals: method and cytogenetic examination of early cleavage stages. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 148–155CrossRefGoogle Scholar
  68. 68.
    Röhrborn G et al (1978) A correlated study of the cytogenetic effect of INH on cell systems of mammals and man conducted by thirteen laboratories. Hum Genet 42: 1–60CrossRefGoogle Scholar
  69. 69.
    Russell LB, Saylors CL (1963) The relative sensitivity of various germ cell stages of the mouse to radiation-induced nondisjunction, chromosome losses and deficiency. In: Sobels FH (ed) Repair from genetic damage and differential radiosensitivity in germ cells. Pergamon, Oxford, pp 313–340Google Scholar
  70. 70.
    Russell LB, de Hamer DL, Montgomery CS (1974) Analysis of 3o c-locus lethals by viability of biochemical studies. Biol Div Annu Prog Rep ORNL 4993: 119–120Google Scholar
  71. 71.
    Russell WL, Russell LB, Kelly EM (1958) Radiation dose rate and mutation frequency. Science 128: 1546–1550PubMedCrossRefGoogle Scholar
  72. 72.
    Russel WL, Kelly EM, Hunsicker PR et al (1972) Effect of radiation dose-rate on the induction of X-chromosome loss in female mice. In: Report of the United Nations Science Committee on the effect of atomic radiations. United Nations, New York (Ionizing radiation: levels and effects, vol 2: Effects)Google Scholar
  73. 73.
    Sankaranarayanan K (1991) Ionizing radiation and genetic risks. I. Epidemiological, population genetic, biochemical and molecular aspects of Mendelian diseases. Mutat Res 258: 349Google Scholar
  74. 74.
    Sankaranarayanan K (1991) Ionizing radiation and genetic risks. II. Nature of radiation-induced mutations in experimental mammalian in vivo systems. Mutat Res 258: 51–73PubMedCrossRefGoogle Scholar
  75. 75.
    Sankaranarayanan K (1991) Ionizing radiation and genetic risks. III. Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction of mutations by radiation. Mu-tat Res 258: 75–97CrossRefGoogle Scholar
  76. 76.
    Sankaranarayanan K (1991) Ionizing radiation and genetic risks. IV. Current methods, estimates of risk of Medelian disease, human data and lessons from biochemical and molecular studies of mutations. Mutat Res 258: 99–122PubMedCrossRefGoogle Scholar
  77. 77.
    Sasaki MS, Miyata H (1968) Biological dosimetry in atomic bomb survivors. Nature 220: 1189–1193PubMedCrossRefGoogle Scholar
  78. 78.
    Schmidt H (1973) Wahrscheinliche genetische Belastung der Bevölkerung mit INH (Isonikotinsäure-Hydrazid). Hum Genet 20: 31–45CrossRefGoogle Scholar
  79. 79.
    Scholte PJL, Sobels FH (1964) Sex ratio shift among progeny from patients having received therapeutic X-radiation. Am J Hum Genet 16: 26–37PubMedGoogle Scholar
  80. 80.
    Schull WJ, Neel JV (1958) Radiation and the sex ratio in man. Science 128: 343–348PubMedCrossRefGoogle Scholar
  81. 81.
    Schull WJ, Neel JV (1962) Maternal radiation and mongolism. Lancet 2: 537–538CrossRefGoogle Scholar
  82. 82.
    Schull WJ, Neel JV, Hashizume A (1968) Some further observations on the sex ratio among infants born to survivors of the atomic bombings of Hiroshima and Nagasaki. Am J Hum Genet 18: 328–338Google Scholar
  83. 83.
    Schull WJ, Otake M, Neel JV (1981) Genetic effects of the atomic bombs: a reappraisal. Science 213: 1220–1227PubMedCrossRefGoogle Scholar
  84. 84.
    Searle AG (1972) Spontaneous frequencies of point mutations in mice. Hum Genet 16: 33–38CrossRefGoogle Scholar
  85. 85.
    Searle AG, Edwards JH (1986) The estimation of risks from the induction of recessive mutations after exposure to ionising radiation. J Med Genet 23: 220–226PubMedCrossRefGoogle Scholar
  86. 86.
    Sigler AT, Lilienfeld AM, Cohen B-H, Westlake JE (1965) Radiation exposure in parents with mongolism (Down’s syndrome). Johns Hopkins. Med J 117: 374Google Scholar
  87. 87.
    Strobel D, Vogel F (1958) Ein statistischer Gesichtspunkt für das Planen von Untersuchungen über Änderungen der Mutationsrate beim Menschen. Acta Genet Stat Med 8: 274–286Google Scholar
  88. 88.
    Tanaka K, Ohkura K (1958) Evidence for genetic effects of radiation on offspring of radiologic technicians. Jpn J Hum Genet 3: 135–145Google Scholar
  89. 89.
    Tang BK, Grant DM, Kalow W (1983) Isolation and identification of 5-acetylamino-6-formylamino-3-methyluracil as a major metabolite of caffeine in man. Drug Metab Dispos 11: 218–220PubMedGoogle Scholar
  90. 90.
    Tough IS, Buckton KE, Baikie AG, Court Brown WM (1960) X-ray induced chromosome damage in man. Lancet 2: 849–851PubMedCrossRefGoogle Scholar
  91. 91.
    Traut H (1976) Effects of ionizing radiation on DNA. In: Hüttermann J, Köhnlein W, ‘Houle R (eds) Molecular biology, biochemistry and biophysics, vol 27. Springer, Berlin Heidelberg New York, pp 335–347Google Scholar
  92. 93.
    Uchida IA, Holunga R, Lawler C (1968) Maternal radiation and chromosomal aberrations. Lancet 2: 1045–1049PubMedCrossRefGoogle Scholar
  93. 94.
    Uchida IA, Lee CPV, Byrnes EM (1975) Chromosome aberrations induced in vitro by low doses of radiation: Nondisjunction in lymphocytes of young adults. Am J Hum Genet 27: 419–429Google Scholar
  94. 95.
    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1982–1992) Ionizing radiation: sources and biological effects. United Nations, New York (UNSCEAR reports, every four years)Google Scholar
  95. 96.
    Vogel F (1970) Monitoring of human populations. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 445–452CrossRefGoogle Scholar
  96. 97.
    Vogel F (1992) Risk calculations for hereditary effects of ionising radiation in humans. Hum Genet 89: 127–146PubMedCrossRefGoogle Scholar
  97. 98.
    Vogel F, Altland K (1982) Utilization of material from PKU-screening programs for mutation screening. Prog Mutat Res 3: 143–157Google Scholar
  98. 99.
    Vogel F, Jäger P (1969) The genetic load of a human population due to cytostatic agents. Humangenetik 7: 287–304PubMedCrossRefGoogle Scholar
  99. 100.
    Vogel F, Röhrborn G (eds) (1970) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New YorkGoogle Scholar
  100. 101.
    Vogel F, Röhrborn G, Schleiermacher E, Schroeder TM (1969) Strahlengenetik der Säuger. Thieme, Stuttgart (Fortschr Allg Kl in Humangen)Google Scholar
  101. 102.
    Wei LX, Zha YR, Tao ZF (1987) Recent advances of health survey in high background radiation areas in Yangjiang, China. In: International symposium on biological effects of low-level radiation. pp 1–17Google Scholar
  102. 103.
    Wei LX, Zha YR, Tao ZF et al (1990) Epidemiological investigation of radiological effects in high background radiation areas in Yangjiang, China. J Radiat Res (Tokyo) 31: 119–136Google Scholar
  103. 104.
    Yoshimoto Y, Neel JV, Schull W] et al (1990) Malignant tumors during the first 2 decades of life in the offspring of atomic bomb survivors. Am J Human Genet 46: 1041–1052Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Friedrich Vogel
    • 1
  • Arno G. Motulsky
    • 2
  1. 1.Institut für Humangenetik und AnthropologieHeidelbergGermany
  2. 2.Division of Medical Genetics, School of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations