Inselbergs1 are isolated rock outcrops which are occasionally encountered throughout the palaeotropics and the neotropics amidst different types of vegetation (Fig. 8.1A and B). They consist of monolithic blocks, mostly of granite or gneiss, of a considerable geological age, i.e. 10 × 106 years at least and 40 − 50 × 106 years on average. More rarely inselbergs may also consist of sandstone. They range from several tens or hundreds of meters high, the highest one found in French Guiana being 740 m high (Schnell 1987). “Shield-type” inselbergs may have extensions of several square kilometers. Inselbergs are frequently seen in some savannas, and with a certain savanna affinity of their flora they also have been described as “rock savanna”. However, they also occur within tropical forests. In arid regions and deserts they may have been eroded to heaps of rather small rocks (Fig. 8.1C).


Chlorophyll Fluorescence Desiccation Tolerance Rock Outcrop Biological Soil Crust Effective Quantum Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartels D, Nelson D (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ 17: 659–667CrossRefGoogle Scholar
  2. Barthlott W, Gröger A, Porembski S (1993) Some remarks on the vegetation of tropical inselbergs: diversity and ecological differentiation. Biogeographia 69: 105–124Google Scholar
  3. Bewley JD (1979) Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol 30: 195–238CrossRefGoogle Scholar
  4. Bornhardt W (1900) Zur Oberflächengestaltung und Geologie Deutsch-Ostafrikas. Reimer, BerlinGoogle Scholar
  5. Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils in the Orinoco region in the Guayana highlands, Venezuela. Bot Acta 107: 422–431Google Scholar
  6. Campbell DG, Hammond HD (1989) Floristic inventory of tropical countries. The New York Botanical Garden, New YorkGoogle Scholar
  7. Coxson DS, Kershaw KA (1983) Rehydration response of nitrogenase activity and carbon fixation in terrestrial Nostoc commune from Stipa-Bonteloa grassland. Can J Bot 61: 2658–2668CrossRefGoogle Scholar
  8. Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in arid lands? Evidence from δ15N of soils. Oecologia 94: 314–317CrossRefGoogle Scholar
  9. Gaff DF (1977) Desiccation tolerant vascular plants of Southern Africa. Oecologia 31: 95–109CrossRefGoogle Scholar
  10. Gaff DF (1987) Desiccation tolerant plants in South America. Oecologia 74:133–136CrossRefGoogle Scholar
  11. Golubic S (1967) Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumanâ). Int Rev Hydrobiol 52: 693–699CrossRefGoogle Scholar
  12. Howarth CJ (1991) Molecular responses of plants to an increased incidence of heat shock. Plant Cell Environ 14: 831–841CrossRefGoogle Scholar
  13. Huber O (1980) Die Felsvegetation am oberen Orinoko in Südvenezuela. In: Reisig H (ed) Blumenparadiese und botanische Gärten der Erde. Pinguin-Verlag, Innsbruck und Umschau Verlag, Frankfurt, pp 200–203Google Scholar
  14. Huber O, Alarcon C (1988) Mapa de vegatacion de Venezuela, Ministerio del Ambiente y de los Recursos naturales renovables, CaracasGoogle Scholar
  15. Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beitr Kryptogamenflora Schweiz 9: 1–560Google Scholar
  16. Jeffries DL, Link SO, Klopatek JM (1993a) CO2 fluxes of cryptogamic crusts. I. Response to resaturation. New Phytol 125: 163–173Google Scholar
  17. Jeffries DL, Link SO, Klopatek JM (1993b) CO2 fluxes of cryptogamic crusts. II. Response of dehydration. New Phytol 125: 391–396Google Scholar
  18. Jones K (1977) The effects of moisture on acetylene reduction by mats of blue-green algae in sub-tropical grassland. Ann Bot 41: 801–806Google Scholar
  19. Lange O (1988) Ecophysiology of photosynthesis:performance of poikilohydric lichens and homoiohydric mediterranean sclerophylls. J Ecol 76: 915–937CrossRefGoogle Scholar
  20. Lange OL, Bilger W, Rimke S, Schreiber U (1989) Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor uptake and by addition of liquid water. Bot Acta 102: 306–313Google Scholar
  21. Lange OL, Kidron GJ, Büdel B, Meyer A, Kilian E, Abeliovich A (1992) Taxonomic cornpostion and photosynthetic characteristics of the ‘biological soil crusts’ covering sand dunes in the western Negev Desert. Funct Ecol 6: 519–527CrossRefGoogle Scholar
  22. Lüttge U, Büdel B, Ball E, Strube F, Weber P (1995) Photosynthesis of terrestrial cyanobacteria under light and desiccation stress as expressed by chlorophyll fluorescence and gas exchange. J Exp Bot 46: 309–319CrossRefGoogle Scholar
  23. Meirelles ST, de Mattos EA, da Silva AC (1997) Potential desiccation tolerant vascular plants from southeastern Brazil. Pol J Env Sci (in press)Google Scholar
  24. Samuelsson G, Lönneborg A, Rosenqvist E, Gustafsson P, Öquist G (1985) Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Physiol 79: 992–995PubMedCrossRefGoogle Scholar
  25. Scherer S, Potts M (1989) Novel water stress protein from a desiccation-tolerant cyanobacterium. Purification and partial characterization. J Biol Chem 264: 12546–12553Google Scholar
  26. Scherer S, Zhong ZP (1991) Desiccation independence of terrestrial Nostoc commune ecotypes ( Cyanobacteria ). Microb Ecol 22: 271–283Google Scholar
  27. Scherer S, Ernst A, Chen T-W, Böger P (1984) Rewetting of drought-resistant blue-green algae:time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 62: 418–423CrossRefGoogle Scholar
  28. Schnell R (1987) La flore et la végétation de l’Amérique tropicale. Masson, ParisGoogle Scholar
  29. Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research:major developments during the past years in retrospect. Prog Bot 54: 151–173Google Scholar
  30. Steyermark JA (1977) Future outlook for threatened and endangered species in Venezuela. In: Prance GT, Elias TS (eds) Extinction is forever. The New York Botanical Garden, New York, pp 128–135Google Scholar
  31. Tuba Z, Lichtenthaler HK, Csintalan Z, Pócs T (1993a) Regreening of desiccated leaves of the poikilochlorohyllous Xerophyta scabrida upon rehydration. J Plant Physiol 142: 103–108CrossRefGoogle Scholar
  32. Tuba Z, Lichtenthaler HK, Maroti I, Csintalan Z (1993b) Resynthesis of thylakoids and functional chloroplasts in the desiccated leaves of the poikilochlorohyllous plant Xerophyta scabrida upon rehydration. J Plant Physiol 142: 742–748CrossRefGoogle Scholar
  33. Tuba Z, Lichtenthaler HK, Csintalan Z, Nagy Z, Szente U (1994) Reconstitution of chlorophylls and photosynthetic CO2 assimilation upon rehydration of the desiccated poikilochlorohyllous plant Xerophyta scabrida (Pax) Th. Dur. et Schinz. Planta 192: 414–420Google Scholar
  34. Tuba Z, Lichtenthaler HK, Csintalan Z, Szente K (1996) Loss of chlorophylls, cessation of photosynthetic CO2 assimilation and respiration in the poikilochlorohyllous plant Xerophyta scabrida during desiccation. Physiol Plant 96: 383–388CrossRefGoogle Scholar
  35. von Humboldt A (1849) Ansichten der Natur. JG Cotta, Stuttgart. Quoted after the edition of Greno Verlagsgesellschaft, Nördlingen 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Ulrich Lüttge
    • 1
  1. 1.Institut für BotanikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations